Our study investigates short- and long-term effects of infusion of non-esterified fatty acids (NEFA) on insulin secretion in healthy subjects. Twelve healthy individuals underwent a 24-h Intralipid (10% triglyceride emulsion) infusion at a rate of 0.4 ml/min with a simultaneous infusion of heparin (a bolus of 200 U followed by 0.2 U/min per kg body weight). After an overnight fast (baseline), at 6 and at 24 h of Intralipid infusion and 24 h after Intralipid discontinuation (recovery test), all subjects underwent an intravenous glucose tolerance test (iv-GTT) (25 g of glucose/min). Intralipid infusion caused a threefold rise in plasma NEFA concentrations with no difference between the 6- and the 24-h concentrations. Compared to baseline acute insulin response (AIR) (AIR = 63 +/- 8 mU/l), short-term (6-h) Intralipid infusion was associated with a significant increase in AIR (86 +/- 12 mU/l p < 0.01); in contrast, long-term (24-h) Intralipid delivery was associated with inhibition of AIR (31 +/- 5 mU/l) compared to baseline (p < 0.001) and to the 6-h (p < 0.03) triglyceride emulsion infusion. Intralipid infusion was associated with a progressive and significant decline in respiratory quotient (RQ). A positive correlation between changes in fasting plasma NEFA concentrations and AIR at the 6-h infusion (r = 0.89 p < 0.001) was found. In contrast, at the end of the Intralipid infusion period, changes in plasma NEFA concentrations and AIR were negatively correlated (r = -0.87 p < 0.001). The recovery test showed that fasting plasma NEFA concentrations, RQ and AIR had returned to baseline values. In the control study (n = 8) 0.9% NaCl infusion did not mimick the effect of Intralipid. In conclusion, our study demonstrates that short- and long-term exposures of beta cells to high plasma NEFA concentrations have opposite effects on glucose-induced insulin secretion.
Our study suggests that metformin administration is useful to inhibit FI and to lower BW and BF in obese non-diabetic patients.
Cardiotoxicity is one of the most serious side effects of cancer chemotherapy. Current approaches to monitoring of chemotherapy‐induced cardiotoxicity (CIC) as well as model systems that develop in vivo or in vitro CIC platforms fail to notice early signs of CIC. Moreover, breast cancer (BC) patients with preexisting cardiac dysfunctions may lead to different incident levels of CIC. Here, a model is presented for investigating CIC where not only induced pluripotent stem cell (iPSC)‐derived cardiac tissues are interacted with BC tissues on a dual‐organ platform, but electrochemical immuno‐aptasensors can also monitor cell‐secreted multiple biomarkers. Fibrotic stages of iPSC‐derived cardiac tissues are promoted with a supplement of transforming growth factor‐β 1 to assess the differential functionality in healthy and fibrotic cardiac tissues after treatment with doxorubicin (DOX). The production trend of biomarkers evaluated by using the immuno‐aptasensors well‐matches the outcomes from conventional enzyme‐linked immunosorbent assay, demonstrating the accuracy of the authors’ sensing platform with much higher sensitivity and lower detection limits for early monitoring of CIC and BC progression. Furthermore, the versatility of this platform is demonstrated by applying a nanoparticle‐based DOX‐delivery system. The proposed platform would potentially help allow early detection and prediction of CIC in individual patients in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.