Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
In this study the problem of fitting shape primitives to point cloud scenes was tackled as a parameter optimisation procedure, and solved using the popular bees algorithm. Tested on three sets of clean and differently blurred point cloud models, the bees algorithm obtained performances comparable to those obtained using the state-of-the-art random sample consensus (RANSAC) method, and superior to those obtained by an evolutionary algorithm. Shape fitting times were compatible with real-time application. The main advantage of the bees algorithm over standard methods is that it doesn't rely on ad hoc assumptions about the nature of the point cloud model like RANSAC approximation tolerance.
This article describes the Bees Algorithm in standard formulation and presents two applications to real-world continuous optimisation engineering problems. In the first case, the Bees Algorithm is employed to train three artificial neural networks (ANNs) to model the inverse kinematics of the joints of a three-link manipulator. In the second case, the Bees Algorithm is used to optimise the parameters of a linear model used to approximate the torque output for an electro-hydraulic load system. In both cases, the Bees Algorithm outperformed the state-of-the-art in the literature, proving to be an effective optimisation technique for engineering systems.
This study presents a new neural network approach to identify the presence and type of obstruction in pipes from measurements of passive acoustic emissions. Inserts were used in a fluid re-circulation loop to simulate different types of blockage at various flow rates within the turbulent regime, generating patterns of acoustic emissions. The data were pre-processed using Fourier analysis, and two candidate sets of statistical descriptors were extracted for each measurement. The first set used average and spread of the Fourier transform amplitudes, the second used data binning to obtain a concise representation of the spectrum of amplitudes. Experimental evidence showed the second set of descriptors was the most suitable to train the neural network to recognize with accuracy the presence and type of blockage. The obtained results compare favourably with the literature, indicating that the approach provides a tool to enhance process monitoring in water supply systems, in particular early detection of upstream blockages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.