The eclogite facies Zermatt-Saas ophiolite in the Western Alps includes a composite chaotic unit exposed in the Lake Miserin area, in the southern Aosta Valley region. The chaotic unit is characterized by a block-in-matrix texture consisting of ultramafic clasts and blocks embedded within a carbonate matrix. This unit overlies massive serpentinite and ophicarbonate rocks and is unconformably overlain by layered calcschist. Despite the effects of subduction and collision-related deformation and metamorphism, the internal stratigraphy and architecture of the chaotic unit are recognizable and are attributed to different types of mass transport processes in the Jurassic Ligurian-Piedmont Ocean. This finding represents an exceptional record of the preorogenic history of the Alpine ophiolites, marked by different pulses of extensional tectonics responsible for the rough seafloor topography characterized by structural highs exposed to submarine erosion. The Jurassic tectonostratigraphic setting envisioned is comparable to that observed in present-day magma-poor slow-and ultraslow-spreading ridges, characterized by mantle exposure along fault scarps that trigger mass transport deposits and turbiditic sedimentation. Our preorogenic reconstruction is significant in an eclogitized collisional orogenic belt in which chaotic rock units may be confused with the exclusive product of subduction-related tectonics, thus obscuring the record of an important preorogenic history. LITHOSPHERE
The Anarak Metamorphic Complex, localized in Central Iran, is a fossil accretionary wedge composed of several tectonometamorphic units. Some of these, the Chah Gorbeh, the Morghab and the Ophiolitic complexes, contain mafic rocks that have been metamorphosed at high-pressure–low-temperature conditions. Such units have been stacked together and later refolded during the final stages of exhumation. Structural analysis at the mesoscale recognized at least three deformation events. Microstructural analyses, mineral chemistry and thermodynamic modelling reveal that the mafic schists followed contrasting P–T paths during their tectonometamorphic evolutions. In the schists of the Chah Gorbeh and Ophiolitic complexes an early greenschist-facies stage was later overprinted by blueschist-facies phase assemblages with suggested peak conditions of 390–440°C at 0.6–0.9 GPa for the meta-basalt within the Ophiolitic Complex and 320–380°C at 0.6–0.9 GPa for the blueschists of the Chah Gorbeh Complex. P–T conditions at metamorphic peak were 410–450°C at 0.78–0.9 GPa for the Morghab blueschists, but they are reached before a greenschist-facies re-equilibration. Compositional zoning of amphiboles and epidotes of this greenschist-facies stage suggests a renewed pressure increase at the end of this metamorphic stage. Based on these data we reconstructed a clockwise P–T path for the Morghab mafic schists and a counter-clockwise path for the Chah Gorbeh blueschists and ophiolitic meta-basalts. Such contrasting metamorphic evolutions of tectonic units that were later accreted to the same wedge are indicative of the complex tectonic dynamics that occur within accretionary–subduction complexes.
A subduction complex of the northwestern Alps consists of serpentinites, eclogitic metagabbros, flysch-like metasediments, meta-ophicarbonates, and gneissic slices. Unlike other subduction complexes, it contains unusual hybridized rocks described here for the first time in the northwestern Alps. They are preserved as patches interstitial in the metagabbro and as layers within metagabbros and serpentinites. The hybridized rocks are made of high modal zoisite/clinozoisite + white mica pseudomorphs of lawsonite, garnet, and amphibole associated with an Alpine eclogite-facies fabric. While these eclogitic metagabbros are chemically comparable to oceanic oxide gabbros from the ultraslow Southwest Indian Ridge, the layers are extremely enriched in Al 2 O 3 and CaO and depleted in TiO 2 , MgO, and SiO 2 relative to metagabbros. Patches have a geochemical signature that is intermediate between that of layers and metagabbros. Trace element compositions of hybridized rocks suggest a contribution from a fluid derived from a mixed source made of sediments and serpentinites. Except for Ba, Rb, and K, layers are comparable to the global subducting sediments, indicating a sedimentary contribution, whereas the enrichment in Cr indicates a serpentinite contribution. Metasediment dehydration and chemical exchange of Ca and Sr have resulted in significant lawsonite crystallization in the subduction zone, as reflected by the ubiquitous presence of lawsonite pseudomorphs. In light of the unique textures and geochemical signature of the lawsonite pseudomorph-bearing hybridized rocks, an origin by fluid-rock interaction and Ca-metasomatism in the subduction environment is inferred and considered in the Western Alps context.
The geological map of the Saint-Marcel valley at the scale of 1:20,000 illustrates the tectonic setting of metaophiolites from the southern Aosta Valley, in the Italian side of the Western Alpine belt. The map highlights the sharp contact between the metaophiolitic basement and its metasedimentary cover, which mainly consists of quartzites, marbles, and calcschists. In spite of the Alpine tectonics, this contact is regarded as deriving from the original oceanic crust/sediments interface. Metaophiolites mostly consist of metabasalts hosting Fe-Cu sulphide mineralisations, characterised by high-pressure metamorphic imprint. These rocks likely represent the shallowest portion of the Tethyan oceanic lithosphere created near the axis of the slow-spreading ridge where hydrothermal fluid circulation was active. Selected key-sections through metasediments reveal a consistent internal lithostratigraphy, in spite of the pervasive metamorphic and tectonic reworking acting during the Alpine evolution. Metasediments reflect various sedimentation episodes starting from pelagic and proximal settings to the onset of the orogenic stage. The Saint-Marcel valley metasediments thus reflect a changing in the sedimentation environments through time and space during the overall geologic evolution. ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.