Despite its importance in many industrial, geological and biological processes, the mechanism of crystallization from supersaturated solutions remains a matter of debate. Recent discoveries show that in many solution systems nanometre-sized structural units are already present before nucleation. Still little is known about the structure and role of these so-called pre-nucleation clusters. Here we present a combination of in situ investigations, which show that for the crystallization of calcium phosphate these nanometre-sized units are in fact calcium triphosphate complexes. Under conditions in which apatite forms from an amorphous calcium phosphate precursor, these complexes aggregate and take up an extra calcium ion to form amorphous calcium phosphate, which is a fractal of Ca 2 (HPO 4 ) 3 2 À clusters. The calcium triphosphate complex also forms the basis of the crystal structure of octacalcium phosphate and apatite. Finally, we demonstrate how the existence of these complexes lowers the energy barrier to nucleation and unites classical and non-classical nucleation theories.
Many organisms use amorphous calcium carbonate (ACC) and control its stability by various additives and water; however, the underlying mechanisms are yet unclear. Here, the effect of water and inorganic additives commonly found in biology on the dynamics of the structure of ACC during crystallization and on the energetics of this process is studied. Total X‐ray scattering and pair distribution function analysis show that the short‐ and medium‐range order of all studied ACC samples are similar; however, the use of in situ methodologies allow the observation of small structural modifications that are otherwise easily overlooked. Isothermal calorimetric coupled with microgravimetric measurements show that the presence of Mg2+ and of PO4 3− in ACC retards the crystallization whereas increased water content accelerates the transformation. The enthalpy of ACC with respect to calcite appears, however, independent of the additive concentration but decreases with water content. Surprisingly, the enthalpic contribution of water is compensated for by an equal and opposite entropic term leading to a net independence of ACC thermodynamic stability on its hydration level. Together, these results point toward a kinetic stabilization effect of inorganic additives and water, and may contribute to the understanding of the biological control of mineral stability.
Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.
Calcium carbonate is a common constituent of many natural materials, such as shells and skeletons of marine animals. While it is well-documented that additives (organic and inorganic) modulate the crystallization of amorphous calcium carbonate (ACC), the effects of the intrinsic physicochemical characteristics of ACC, such as particle size, shape, and water content on the transformation to crystalline polymorphs, are still poorly understood. Here, we investigate the effect of particle size by preparing ACC nanoparticles with an average size ranging from ∼66 to ∼196 nm using a highresolution titration setup. Our results show that the particle size determined the polymorph selection in solution; an increasing proportion of vaterite to calcite was observed with decreasing particle size. The polymorph selection was ascribed to a higher apparent solubility of ACC with decreasing particle size, a parameter from which we could determine the surface energy of ACC to be ∼0.33 J/m 2 . Upon heating, particle size showed the opposite effect, as smaller particles favored a higher crystallization temperature from ACC into (only) calcite. When the particle size was large enough, crystallization occurred concomitantly with the removal of bulk water at lower temperatures, where the smallest particles transformed at ∼310°C, only after losing the final (surface) water. Our results highlight the importance of particle size as well as the crystallization conditions on the stability and transformation mechanisms of ACC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.