We describe a probabilistic approach for supervised learning when we have multiple experts/annotators providing (possibly noisy) labels but no absolute gold standard. The proposed algorithm evaluates the different experts and also gives an estimate of the actual hidden labels. Experimental results indicate that the proposed method is superior to the commonly used majority voting baseline.
Objective
To evaluate performance of computer-aided detection (CAD) beyond double reading for pulmonary nodules on low-dose computed tomography (CT) by nodule volume.
Methods
A total of 400 low-dose chest CT examinations were randomly selected from the NELSON lung cancer screening trial. CTs were evaluated by two independent readers and processed by CAD. A total of 1,667 findings marked by readers and/or CAD were evaluated by a consensus panel of expert chest radiologists. Performance was evaluated by calculating sensitivity of pulmonary nodule detection and number of false positives, by nodule characteristics and volume.
Results
According to the screening protocol, 90.9 % of the findings could be excluded from further evaluation, 49.2 % being small nodules (less than 50 mm
3
). Excluding small nodules reduced false-positive detections by CAD from 3.7 to 1.9 per examination. Of 151 findings that needed further evaluation, 33 (21.9 %) were detected by CAD only, one of them being diagnosed as lung cancer the following year. The sensitivity of nodule detection was 78.1 % for double reading and 96.7 % for CAD. A total of 69.7 % of nodules undetected by readers were attached nodules of which 78.3 % were vessel-attached.
Conclusions
CAD is valuable in lung cancer screening to improve sensitivity of pulmonary nodule detection beyond double reading, at a low false-positive rate when excluding small nodules.
Key Points
• Computer-aided detection (CAD) has known advantages for computed tomography (CT).
• Combined CAD/nodule size cut-off parameters assist CT lung cancer screening.
• This combination improves the sensitivity of pulmonary nodule detection by CT.
• It increases the positive predictive value for cancer detection.
Colorectal cancer is the third most common cancer in both men and women. It is estimated that in 2004, nearly 147,000 cases of colon and rectal cancer will be diagnosed in the USA, and approximately 57,000 people would die from the disease; however, only 44% of the eligible population undergoes any type of colorectal cancer screening. Many reasons have been identified for non-compliance, with key ones being patient comfort, bowel preparation and cost. Virtual colonoscopy derived from computed tomography (CT) images is gaining broader acceptance as a screening method for colorectal neoplasia. Our research suggests that computer-aided detection (CAD) as a second reader has great potential in improving polyp detection. The ColonCAD prototype presented in this paper was developed and tested on cases representative of the variability and quality in true clinical practice. Results of this study with 150 patients demonstrate that: the developed algorithm generalises well: the sensitivity for polyps > or = 6 mm is on average 90%; and the median false positive rate is a manageable 3 per volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.