In this paper we present an overview of the field of deterministic approximation of Markov processes, both in discrete and continuous times. We will discuss mean field approximation of discrete time Markov chains and fluid approximation of continuous time Markov chains, considering the cases in which the deterministic limit process lives in continuous time or discrete time. We also consider some more advanced results, especially those relating to the limit stationary behaviour. We assume a knowledge of modelling with Markov chains, but not of more advanced topics in stochastic processes
We consider the problem of computing the satisfaction probability of a formula for stochastic models with parametric uncertainty. We show that this satisfaction probability is a smooth function of the model parameters. This enables us to devise a novel Bayesian statistical algorithm which performs model checking simultaneously for all values of the model parameters from observations of truth values of the formula over individual runs of the model at isolated parameter values. This is achieved by exploiting the smoothness of the satisfaction function: by modelling explicitly correlations through a prior distribution over a space of smooth functions (a Gaussian Process), we can condition on observations at individual parameter values to construct an analytical approximation of the function itself. Extensive experiments on non-trivial case studies show that the approach is accurate and several orders of magnitude faster than naive parameter exploration with standard statistical model checking methods.
In this paper we investigate a potential use of fluid approximation techniques in the context of stochastic model checking of CSL formulae. We focus on properties describing the behaviour of a single agent in a (large) population of agents, exploiting a limit result known also as fast simulation. In particular, we will approximate the behaviour of a single agent with a time-inhomogeneous CTMC which depends on the environment and on the other agents only through the solution of the fluid differential equation. We will prove the asymptotic correctness of our approach in terms of satisfiability of CSL formulae and of reachability probabilities. We will also present a procedure to model check time-inhomogeneous CTMC against CSL formulae
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.