Background Complex electronic medical records (EMRs) presenting large amounts of data create risks of cognitive overload. We are designing a Learning EMR (LEMR) system that utilizes models of intensive care unit (ICU) physicians' data access patterns to identify and then highlight the most relevant data for each patient. Objectives We used insights from literature and feedback from potential users to inform the design of an EMR display capable of highlighting relevant information. Methods We used a review of relevant literature to guide the design of preliminary paper prototypes of the LEMR user interface. We observed five ICU physicians using their current EMR systems in preparation for morning rounds. Participants were interviewed and asked to explain their interactions and challenges with the EMR systems. Findings informed the revision of our prototypes. Finally, we conducted a focus group with five ICU physicians to elicit feedback on our designs and to generate ideas for our final prototypes using participatory design methods. Results Participating physicians expressed support for the LEMR system. Identified design requirements included the display of data essential for every patient together with diagnosis-specific data and new or significantly changed information. Respondents expressed preferences for fishbones to organize labs, mouseovers to access additional details, and unobtrusive alerts minimizing color-coding. To address the concern about possible physician overreliance on highlighting, participants suggested that non-highlighted data should remain accessible. Study findings led to revised prototypes, which will inform the development of a functional user interface. Conclusion In the feedback we received, physicians supported pursuing the concept of a LEMR system. By introducing novel ways to support physicians' cognitive abilities, such a system has the potential to enhance physician EMR use and lead to better patient outcomes. Future plans include laboratory studies of both the utility of the proposed designs on decision-making, and the possible impact of any automation bias.
With the extensive deployment of electronic medical record (EMR) systems, EMR usability remains a significant source of frustration to clinicians. There is a significant research need for software that emulates EMR systems and enables investigators to conduct laboratory-based human–computer interaction studies. We developed an open-source software package that implements the display functions of an EMR system. The user interface emphasizes the temporal display of vital signs, medication administrations, and laboratory test results. It is well suited to support research about clinician information-seeking behaviors and adaptive user interfaces in terms of measures that include task accuracy, time to completion, and cognitive load. The Simple EMR System is freely available to the research community and is on GitHub.
The characteristics of a person's health status are often guided by how they live, grow, learn, their genetics, as well as their access to health care. Yet, all too often, studies examining the relationship between social determinants of health (behavioral, sociocultural, and physical environmental factors), the role of demographics, and health outcomes poorly represent these relationships, leading to misinterpretations, limited study reproducibility, and datasets with limited representativeness and secondary research use capacity. This is a profound hurdle in what questions can or cannot be rigorously studied about COVID‐19. In practice, gene–environment interactions studies have paved the way for including these factors into research. Similarly, our understanding of social determinants of health continues to expand with diverse data collection modalities as health systems, patients, and community health engagement aim to fill the knowledge gaps toward promoting health and wellness. Here, a conceptual framework is proposed, adapted from the population health framework, socioecological model, and causal modeling in gene–environment interaction studies to integrate the core constructs from each domain with practical considerations needed for multidisciplinary science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.