Chemical composition of propolis depends on the specificity of the local flora at the site of collection and thus on the geographic and climatic characteristics of this place. This paper describes a comparative analysis of Cuban red propolis (CRP), Brazilian red propolis (BRP), and Dalbergia ecastophyllum exudates (DEE) by high-performance liquid chromatography with diode-array detection and tandem mass spectrometry. The aim of this study was to investigate the overall chemical profile and the botanical origin of red propolis and to suggest similarities and differences between samples collected in different tropical regions. Isoliquiritigenin (1), liquiritigenin and naringenin (2 and 17), isoflavones (3-4 and 16), isoflavans (5-7 and 18), and pterocarpans (8-13) were detected in CRP, BRP, and DEE, whereas polyisoprenylated benzophenones (PPBs) guttiferone E/xanthochymol (14a,b) and oblongifolin A (15) were detected only in BRP. Pigments responsible for the red color of DEE and red propolis were also identified as two C30 isoflavans, the new retusapurpurin B (19) and retusapurpurin A (20). PPBs and pigments were isolated and unambiguously characterized by 1D and 2D NMR analysis. These results show that red propolis samples from different tropical zones have a similar chemical composition. DEE is the main red propolis source, but the presence of PPBs in BRP suggests the contribution of different botanical sources for Brazilian samples. This chemical information is important for quality control of red propolis and its commercial products and for biological study.
A hydroalcoholic extract of lime ( Citrus aurantifolia) leaves has been developed in Cuba to be used as a nutritional supplement and phytomedicine in the form of tincture (TLL). A HPLC-PDA-ESI/MS/MS method has been used for the comprehensive analysis of C-glycosyl flavones in TLL. Six C-glycosyl flavones were characterized and, to confirm the proposed structures and to elucidate the nature of the sugar units, a preparative procedure was applied, and isolated compounds were characterized by NMR. Apigenin-6,8-di-C-beta-D-glucopyranoside (vicenin II) (1), diosmetin-6,8-di- C-beta- d-glucopyranoside (2), apigenin-8-C-beta-D-glucopyranoside (vitexin) (3), apigenin-8-C-[alpha-L-arabinopyranosyl-(1-->6)]-O-beta-D-glucopyranoside (4), apigenin-6-C-[alpha-l-arabinopyranosyl-(1-->6)]-O-beta-D-glucopyranoside (5). and apigenin-6-C-beta-D-glucopyranoside (isovitexin) (6) were identified in TLL and quantified by HPLC-PDA. Compounds 4 and 5 were two new arabinosyl derivatives of vitexin and isovitexin. Inhibitor effect of TLL on platelet aggregation induced by physiological agonists of platelets was evaluated in human plasma. TLL inhibited significantly ADP and epinephrine-induced platelet aggregation in a concentration-dependent manner (IC 50=0.40 and 0.32 mg/mL, respectively).
Food industry produces a large amount of onion wastes. Due to the high amount of bioactive compounds in onion by-products an idea for their reuse, could be use them as source of high-value functional and health ingredients. In this study, outer dry layers of coppery onion "Ramata di Montoro" were used as source of bioactive compounds. Firstly, the chemical profile of secondary metabolites of exhaustive extract, obtained by ultrasound assisted extraction was established by UHPLC-UV-HRMS/MS analysis. Subsequently, the supercritical fluid extraction was used as alternative and green method to recover flavonoids from onion skin. Main parameters such as pressure, temperature and composition of solvent modifier were optimized in order to improve the extraction efficiency of SFE technique, by using a response surface Box-Behnken design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.