The spread of coronavirus disease 2019 (COVID-19) in Italy prompted drastic measures for transmission containment. We examine the effects of these interventions, based on modeling of the unfolding epidemic. We test modeling options of the spatially explicit type, suggested by the wave of infections spreading from the initial foci to the rest of Italy. We estimate parameters of a metacommunity Susceptible-Exposed-Infected-Recovered (SEIR)like transmission model that includes a network of 107 provinces connected by mobility at high resolution, and the critical contribution of presymptomatic and asymptomatic transmission. We estimate a generalized reproduction number (R 0 = 3.60 [3.49 to 3.84]), the spectral radius of a suitable next-generation matrix that measures the potential spread in the absence of containment interventions. The model includes the implementation of progressive restrictions after the first case confirmed in Italy (February 21, 2020) and runs until March 25, 2020. We account for uncertainty in epidemiological reporting, and time dependence of human mobility matrices and awareness-dependent exposure probabilities. We draw scenarios of different containment measures and their impact. Results suggest that the sequence of restrictions posed to mobility and human-to-human interactions have reduced transmission by 45% (42 to 49%). Averted hospitalizations are measured by running scenarios obtained by selectively relaxing the imposed restrictions and total about 200,000 individuals (as of March 25, 2020). Although a number of assumptions need to be reexamined, like age structure in social mixing patterns and in the distribution of mobility, hospitalization, and fatality, we conclude that verifiable evidence exists to support the planning of emergency measures.
SignificanceOrganisms leave traces of DNA in their environment [environmental DNA (eDNA)], such as cells in mucus or feces. When extracted from water or soil, eDNA can be used to track the presence of a target species or the composition of entire communities. In rivers, eDNA dynamics are modulated by transport and decay. Here, we use hydrologically based models to reconstruct the upstream distribution and abundance of target species throughout a river network from eDNA measurements. We validate our method by estimating the catchment-wide biomass distribution of a sessile invertebrate and its parasite, causing disease in salmonids. This work unlocks the power of eDNA for monitoring biodiversity across broad geographies in a way hitherto unfeasible with traditional survey approaches.
The alarming declines of freshwater biodiversity call for efficient biomonitoring at fine spatiotemporal scales, such that conservation measures be grounded upon accurate biodiversity data. Here, we show that combining environmental DNA (eDNA) extracted from stream water samples with models based on hydrological first principles allows upscaling biodiversity estimates for aquatic insects at very high spatial resolution. Our model decouples the diverse upstream contributions to the eDNA data, enabling the reconstruction of taxa distribution patterns. Across a 740-km 2 basin, we obtain a space-filling biodiversity prediction at a grain size resolution of 1-km long stream sections. The model’s accuracy in matching direct observations of aquatic insects’ local occurrence ranges between 57–100%. Our results demonstrate how eDNA can be used for high-resolution biodiversity assessments in rivers with minimal prior knowledge of the system. Our approach allows identification of biodiversity hotspots that could be otherwise overlooked, enabling implementation of focused conservation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.