Cystic fibrosis (CF) is an inherited disease that is characterised by susceptibility to bacterial infections and chronic lung inflammation. Recently, it was suggested that macrophages contribute to impaired host defence and excessive inflammatory responses in CF. Indeed, dysfunction attributed to CF macrophages includes decreased bacterial killing and exaggerated inflammatory responses. However, the mechanisms behind such defects have only been partially defined. MicroRNAs (miRNAs) have emerged as key regulators of several macrophage functions, including their activation, differentiation and polarisation. The goal of this study was to investigate whether miRNA dysregulation underlies the functional abnormalities of CF macrophages. MiRNA profiling of macrophages was performed, with 22 miRNAs identified as differentially expressed between CF and non-CF individuals. Among these, miR-146a was associated with significant enrichment of validated target genes involved in responses to microorganisms and inflammation. As miR-146a dysregulation has been reported in several human inflammatory diseases, we analysed the impact of increased miR-146a expression on inflammatory responses of CF macrophages. These data show that inhibition of miR-146a in lipopolysaccharide-stimulated CF macrophages results in increased interleukin-6 production, which suggests that miR-146a overexpression in CF is functional, to restrict inflammatory responses.
Background Colistin is a last-resort treatment option for many MDR Gram-negative bacteria. The covalent addition of l-aminoarabinose to the lipid A moiety of LPS is the main colistin resistance mechanism in the human pathogen Pseudomonas aeruginosa. Objectives Identification (by in silico screening of a chemical library) of potential inhibitors of ArnT, which catalyses the last committed step of lipid A aminoarabinosylation, and their validation in vitro as colistin adjuvants. Methods The available ArnT crystal structure was used for a docking-based virtual screening of an in-house library of natural products. The resulting putative ArnT inhibitors were tested in growth inhibition assays using a reference colistin-resistant P. aeruginosa strain. The most promising compound was further characterized for its range of activity, specificity and cytotoxicity. Additionally, the effect of the compound on lipid A aminoarabinosylation was verified by MS analyses of lipid A. Results A putative ArnT inhibitor (BBN149) was discovered by molecular docking and demonstrated to specifically potentiate colistin activity in colistin-resistant P. aeruginosa isolates, without relevant effect on colistin-susceptible strains. BBN149 also showed adjuvant activity against colistin-resistant Klebsiella pneumoniae and low toxicity to bronchial epithelial cells. Lipid A aminoarabinosylation was reduced in BBN149-treated cells, although only partially. Conclusions This study demonstrates that in silico screening targeting ArnT can successfully identify inhibitors of colistin resistance and provides a promising lead compound for the development of colistin adjuvants for the treatment of MDR bacterial infections.
In recent years, extracellular vesicles (EVs), cell-derived micro and nano-sized structures enclosed in a double-layer membrane, have been in the spotlight for their high potential in diagnostic and therapeutic applications. Indeed, they act as signal mediators between cells and/or tissues through different mechanisms involving their complex cargo and exert a number of biological effects depending upon EVs subtype and cell source. Being produced by almost all cell types, they are found in every biological fluid including milk. Milk EVs (MEVs) can enter the intestinal cells by endocytosis and protect their labile cargos against harsh conditions in the intestinal tract. In this study, we performed a metabolomic analysis of MEVs, from three different species (i.e., bovine, goat and donkey) by mass spectroscopy (MS) coupled with Ultrahigh-performance liquid chromatography (UHPLC). Metabolites, both common or specific of a species, were identified and enriched metabolic pathways were investigated, with the final aim to evaluate their anti-inflammatory and immunomodulatory properties in view of prospective applications as a nutraceutical in inflammatory conditions. In particular, metabolites transported by MEVs are involved in common pathways among the three species. These metabolites, such as arginine, asparagine, glutathione and lysine, show immunomodulating effects. Moreover, MEVs in goat milk showed a greater number of enriched metabolic pathways as compared to the other kinds of milk.
Reactive oxygen species (ROS) are small oxygen-derived molecules that are used to control infections by phagocytic cells. In macrophages, the oxidative burst produced by the NOX2 NADPH-oxidase is essential to eradicate engulfed pathogens by both oxidative and non-oxidative killing. Indeed, while the superoxide anion (O − 2) produced by NOX2, and the other ROS derived from its transformation, can directly target pathogens, ROS also contribute to activation of non-oxidative microbicidal effectors. The response of pathogens to the phagocytic oxidative burst includes the expression of different enzymes that target ROS to reduce their toxicity. Superoxide dismutases (SODs) are the primary scavengers of O − 2 , which is transformed into H 2 O 2. In the Gram-negative Salmonella typhimurium, periplasmic SODCI has a major role in bacterial resistance to NOX-mediated oxidative stress. In Pseudomonas aeruginosa, the two periplasmic SODs, SODB, and SODM, appear to contribute to bacterial virulence in small-animal models. Furthermore, NOX2 oxidative stress is essential to restrict P. aeruginosa survival in macrophages early after infection. Here, we focused on the role of P. aeruginosa SODs in the counteracting of the lethal effects of the macrophage oxidative burst. Through this study of the survival of sod mutants in macrophages and the measurement of ROS in infected macrophages, we have identified a dual, antagonistic, role for SODB in P. aeruginosa survival. Indeed, the survival of the sodB mutants, but not of the sodM mutants, was greater than that of the wild-type (WT) bacteria early after infection, and sodB-infected macrophages showed higher levels of O − 2 and lower levels of H 2 O 2. This suggests that SODB contributes to the production of lethal doses of H 2 O 2 within the phagosome. However, later on following infection, the sodB mutants survived less that the WT bacteria, which highlights the pro-survival role of SODB. We have explained this defensive role through an investigation of the activation of autophagy, which was greater in the sodB-infected macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.