The discovery of methods suitable for the conversion in vitro of native proteins into amyloid fibrils has shed light on the molecular basis of amyloidosis and has provided fundamental tools for drug discovery. We have studied the capacity of a small library of tetracycline analogues to modulate the formation or destructuration of 2-microglobulin fibrils. The inhibition of fibrillogenesis of the wild type protein was first established in the presence of 20% trifluoroethanol and confirmed under a more physiologic environment including heparin and collagen. The latter conditions were also used to study the highly amyloidogenic variant, P32G. The NMR analysis showed that doxycycline inhibits 2-microglobulin self-association and stabilizes the native-like species through fast exchange interactions involving specific regions of the protein.Cell viability assays demonstrated that the drug abolishes the natural cytotoxic activity of soluble 2-microglobulin, further strengthening a possible in vivo therapeutic exploitation of this drug. Doxycycline can disassemble preformed fibrils, but the IC 50 is 5-fold higher than that necessary for the inhibition of fibrillogenesis. Fibril destructuration is a dynamic and timedependent process characterized by the early formation of cytotoxic protein aggregates that, in a few hours, convert into non-toxic insoluble material. The efficacy of doxycycline as a drug against dialysis-related amyloidosis would benefit from the ability of the drug to accumulate just in the skeletal system where amyloid is formed. In these tissues, the doxycycline concentration reaches values several folds higher than those resulting in inhibition of amyloidogenesis and amyloid destructuration in vitro.Amyloidosis associated with long term hemodialysis results from the deposition of full-length 2-microglobulin (2-m) 2 and its N-terminal truncated species ⌬N62m in target tissues (1, 2). Although all peripheral organs (but not the brain) can be potentially affected (3), the muscle-skeletal tissues are the preferential target always involved in this type of amyloidosis. Despite significant progress achieved in the hemodialysis techniques, including the increased biocompatibility and the active removal of circulating 2-m, the onset of this amyloidosis can be delayed but not avoided in dialysis-related amyloidosis patients (4). New therapeutic approaches, targeting the process of protein aggregation and promoting fibril solubilization (5), are under investigation for the treatment of different types of amyloid diseases. Up until now, different classes of structurally unrelated compounds have been investigated for their ability to interfere with protein self-aggregation and to weaken the intermolecular interactions that stabilize the fibrillar structure of the aggregates (6). Over 10 years ago, iododoxorubicin was serendipitously discovered as the prototype of a class of compounds able to inhibit protein aggregation (7), but this compound was subsequently abandoned for its toxicity. The resemblance of the ...
A key component to success in structure-based drug design is reliable information on protein-ligand interactions. Recent development in NMR techniques has accelerated this process by overcoming some of the limitations of X-ray crystallography and computational protein-ligand docking. In this work we present a new scoring protocol based on NMR-derived interligand INPHARMA NOEs to guide the selection of computationally generated docking modes. We demonstrate the performance in a range of scenarios, encompassing traditionally difficult cases such as docking to homology models and ligand dependent domain rearrangements. Ambiguities associated with sparse experimental information are lifted by searching a consensus solution based on simultaneously fitting multiple ligand pairs. This study provides a previously unexplored integration between molecular modeling and experimental data, in which interligand NOEs represent the key element in the rescoring algorithm. The presented protocol should be widely applicable for protein-ligand docking also in a different context from drug design and highlights the important role of NMR-based approaches to describe intermolecular ligand-receptor interactions.
In a famous experiment Stanley Miller showed that a large number of organic substances can emerge from sparking a mixture of methane, ammonia and hydrogen in the presence of water (Miller, Science 117:528-529, 1953). Among these substances Miller identified different amino acids, and he concluded that prebiotic events may well have produced many of Life's molecular building blocks. There have been many variants of the original experiment since, including different gas mixtures (Miller, J Am Chem Soc 77:2351-2361, 1955; Oró Nature 197:862-867, 1963; Schlesinger and Miller, J Mol Evol 19:376-382, 1983; Miyakawa et al., Proc Natl Acad Sci 99:14,628-14,631, 2002). Recently some of Miller's remaining original samples were analyzed with modern equipment (Johnson et al. Science 322:404-404, 2008; Parker et al. Proc Natl Acad Sci 108:5526-5531, 2011) and a total of 23 racemic amino acids were identified. To give an overview of the chemical variety of a possible prebiotic broth, here we analyze a "Miller type" experiment using state of the art mass spectrometry and NMR spectroscopy. We identify substances of a wide range of saturation, which can be hydrophilic, hydrophobic or amphiphilic in nature. Often the molecules contain heteroatoms, with amines and amides being prominent classes of molecule. In some samples we detect ethylene glycol based polymers. Their formation in water requires the presence of a catalyst. Contrary to expectations, we cannot identify any preferred reaction product. The capacity to spontaneously produce this extremely high degree of molecular variety in a very simple experiment is a remarkable feature of organic chemistry and possibly prerequisite for Life to emerge. It remains a future task to uncover how dedicated, organized chemical reaction pathways may have arisen from this degree of complexity.
β₂-Microglobulin has been a model system for the study of fibril formation for 20 years. The experimental study of β₂-microglobulin structure, dynamics, and thermodynamics in solution, at atomic detail, along the pathway leading to fibril formation is difficult because the onset of disorder and aggregation prevents signal resolution in Nuclear Magnetic Resonance experiments. Moreover, it is difficult to characterize conformers in exchange equilibrium. To gain insight (at atomic level) on processes for which experimental information is available at molecular or supramolecular level, molecular dynamics simulations have been widely used in the last decade. Here, we use molecular dynamics to address three key aspects of β₂-microglobulin, which are known to be relevant to amyloid formation: (1) 60 ns molecular dynamics simulations of β₂-microglobulin in trifluoroethanol and in conditions mimicking low pH are used to study the behavior of the protein in environmental conditions that are able to trigger amyloid formation; (2) adaptive biasing force molecular dynamics simulation is used to force cis-trans isomerization at Proline 32 and to calculate the relative free energy in the folded and unfolded state. The native-like trans-conformer (known as intermediate 2 and determining the slow phase of refolding), is simulated for 10 ns, detailing the possible link between cis-trans isomerization and conformational disorder; (3) molecular dynamics simulation of highly concentrated doxycycline (a molecule able to suppress fibril formation) in the presence of β₂-microglobulin provides details of the binding modes of the drug and a rationale for its effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.