A study of samarium powder‐catalyzed cross‐coupling reactions of aryl halides with terminal alkynes is described. The couplings performed in the polyethylene glycol PEG‐600 provided the corresponding coupling products in good yields. The first example of palladium‐free, copper‐free and amine‐free catalytic system for Sonogashira couplings is presented in the absence of ligand.
Epsilon ferrite (ε-Fe2O3) is a metastable phase of iron(III) oxide, intermediate between maghemite and hematite. It has recently attracted interest because of its magnetocrystalline anisotropy, which distinguishes it from the other polymorphs, and results in a gigantic coercive field and a natural ferromagnetic resonance frequency in the THz range. Moreover, it possesses a polar crystal structure, making it a potential ferroelectric, hence a potential multiferroic. Due to the need of size confinement to stabilize the metastable phase, ε-Fe2O3 has been synthesized mainly as nanoparticles. However, to favor integration in devices, and take advantage of its unique functional properties, synthesis as epitaxial thin films is desirable. In this paper, we report the growth of ε-Fe2O3 as epitaxial thin films on (100)-oriented yttrium-stabilized zirconia substrates. Structural characterization outlined the formation of multiple in-plane twins, with two different epitaxial relations to the substrate. Transmission electron microscopy showed how such twins develop in a pillar-like structure from the interface to the surface. Magnetic characterization confirmed the high magnetocrystalline anisotropy of our film and revealed the presence of a secondary phase which was identified as the well-known magnetite. Finally, angular analysis of the magnetic properties revealed how the presence of twins impacts their azimuthal dependence.
Hysteresis loops characterize a wide variety of behaviors in fields ranging from physics and chemistry to economics and sociology. In particular, they represent the main characteristic of ferroic materials such as ferromagnetic and ferroelectric, which, in recent years, have attracted much interest due to their multifunctional properties. Although measuring such loops may not be experimentally complicated, extracting the intrinsic values of the characteristic parameters of the loop may prove difficult due to the different contributions to the measured hysteresis. In this paper, a simple technique is proposed to analyze hysteresis loops and to extract solely the contribution of the ferromagnetic or ferroelectric material. Such method consists in differentiating the measured loop, deconvoluting the different contributions and selectively integrating only the signals belonging to the ferroic response. A discussion of the limitations of the method is presented. Different measured ferromagnetic and ferroelectric hysteresis loops were also used to validate the technique. Comparison between experimental and reconstructed data demonstrated the precision and reliability of the technique. Moreover, application of such method allowed us to highlight properties of a Bi2FeCrO6 room temperature multiferroic thin film that were not previously observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.