In a population which had passed SBT, the ability of the traditional weaning indices to discriminate between children successfully extubated and children re-intubated is very poor.
The application of a chest tube removal protocol using a digital drainage unit featuring a continuous recording of air leak was safe and cost effective. Although future studies are warranted to confirm these results in other settings, the use of this new protocol is now routinely applied in our practice.
The improvement of the Quality of Life (QoL) and the enhancement of the Quality of Services (QoS) represent the main goal of every city evolutionary process. It is possible making cities smarter promoting innovative solutions by use of Information and Communication Technology (ICT) for collecting and analysing large amounts of data generated by several sources, such as sensor networks, wearable devices, and IoT devices spread among the city. The integration of different technologies and different IT systems, needed to build smart city applications and services, remains the most challenge to overcome. In the Smart City context, this paper intends to investigate the Smart Environment pillar, and in particular the aspect related to the implementation of Smart Energy Grid for citizens in the urban context. The innovative characteristic of the proposed solution consists of using the Blockchain technology to join the Grid, exchanging information, and buy/sell energy between the involved nodes (energy providers and private citizens), using the Blockchain granting ledger.
In this review, we present an analysis of the most used multi-agent reinforcement learning algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the most critical issues that must be taken into account in their extension to multi-agent scenarios. The analyzed algorithms were grouped according to their features. We present a detailed taxonomy of the main multi-agent approaches proposed in the literature, focusing on their related mathematical models. For each algorithm, we describe the possible application fields, while pointing out its pros and cons. The described multi-agent algorithms are compared in terms of the most important characteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability, and observability. We also describe the most common benchmark environments used to evaluate the performances of the considered methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.