In less than 10 years, melanoma treatment has been revolutionized with the approval of tyrosine kinase inhibitors and immune checkpoint inhibitors, which have been shown to have a significant impact on the prognosis of patients with melanoma. The early steps of this transformation have taken place in research laboratories. The mitogen-activated protein kinase (MAPK) pathway, phosphoinositol-3-kinase (PI3K) pathway promote the development of melanoma through numerous genomic alterations on different components of these pathways. Moreover, melanoma cells deeply interact with the tumor microenvironment and the immune system. This knowledge has led to the identification of novel therapeutic targets and treatment strategies. In this review, the epidemiological features of cutaneous melanoma along with the biological mechanisms involved in its development and progression are summarized. The current state-of-the-art of advanced stage melanoma treatment strategies and the currently available evidence of the use of predictive and prognostic biomarkers are also discussed.
The medical history of cancer began millennia ago. Historical findings of patients with cancer date back to ancient Egyptian and Greek civilizations, where this disease was predominantly treated with radical surgery and cautery that were often ineffective, leading to the death of patients. Over the centuries, important discoveries allowed to identify the biological and pathological features of tumors, without however contributing to the development of effective therapeutic approaches until the end of the 1800s, when the discovery of X-rays and their use for the treatment of tumors provided the first modern therapeutic approach in medical oncology. However, a real breakthrough took place after the Second World War, with the discovery of cytotoxic antitumor drugs and the birth of chemotherapy for the treatment of various hematological and solid tumors. Starting from this epochal turning point, there has been an exponential growth of studies concerning the use of new drugs for cancer treatment. The second fundamental breakthrough in the field of oncology and pharmacology took place at the beginning of the ‘80s, thanks to molecular and cellular biology studies that allowed the development of specific drugs for some molecular targets involved in neoplastic processes, giving rise to targeted therapy. Both chemotherapy and target therapy have significantly improved the survival and quality of life of cancer patients inducing sometimes complete tumor remission. Subsequently, at the turn of the third millennium, thanks to genetic engineering studies, there was a further advancement of clinical oncology and pharmacology with the introduction of monoclonal antibodies and immune checkpoint inhibitors for the treatment of advanced or metastatic tumors, for which no effective treatment was available before. Today, cancer research is always aimed at the study and development of new therapeutic approaches for cancer treatment. Currently, several researchers are focused on the development of cell therapies, anti-tumor vaccines, and new biotechnological drugs that have already shown promising results in preclinical studies, therefore, in the near future, we will certainly assist to a new revolution in the field of medical oncology.
Cancer is a multifactorial pathology and it represents the second leading cause of death worldwide. In the recent years, numerous studies highlighted the dual role of the gut microbiota in preserving host’s health. Gut resident bacteria are able to produce a number of metabolites and bioproducts necessary to protect host’s and gut’s homeostasis. Conversely, several microbiota subpopulations may expand during pathological dysbiosis and therefore produce high levels of toxins capable, in turn, to trigger both inflammation and tumorigenesis. Importantly, gut microbiota can interact with the host either modulating directly the gut epithelium or the immune system. Numerous gut populating bacteria, called probiotics, have been identified as protective against the genesis of tumors. Given their capability of preserving gut homeostasis, probiotics are currently tested to help to fight dysbiosis in cancer patients subjected to chemotherapy and radiotherapy. Most recently, three independent studies show that specific gut resident species may potentiate the positive outcome of anti-cancer immunotherapy. The highly significant studies, uncovering the tight association between gut microbiota and tumorigenesis, as well as gut microbiota and anti-cancer therapy, are here described. The role of the Lactobacillus rhamnosus GG (LGG), as the most studied probiotic model in cancer, is also reported. Overall, according to the findings here summarized, novel strategies integrating probiotics, such as LGG, with conventional anti-cancer therapies are strongly encouraged.
Reverse transcription-quantitative polymerase chain reaction (RT-qPcR) is the gold standard method for the diagnosis of cOVId-19 infection. due to pre-analytical and technical limitations, samples with low viral load are often misdiagnosed as false-negative samples. Therefore, it is important to evaluate other strategies able to overcome the limits of RT-qPcR. Blinded swab samples from two individuals diagnosed positive and negative for cOVId-19 were analyzed by droplet digital PcR (ddPcR) and RT-qPcR in order to assess the sensitivity of both methods. Intercalation chemistries and a World Health Organization (WHO)/center for disease control and Prevention (cdc)-approved probe for the SARS-coV-2 N gene were used. SYBR-Green RT-qPcR is not able to diagnose as positive samples with low viral load, while, TaqMan Probe RT-qPcR gave positive signals at very late ct values. On the contrary, ddPcR showed higher sensitivity rate compared to RT-qPcR and both EvaGreen and probe ddPcR were able to recognize the sample with low viral load as positive even at 10-fold diluted concentration. In conclusion, ddPCR shows higher sensitivity and specificity compared to RT-qPcR for the diagnosis of cOVId-19 infection in false-negative samples with low viral load. Therefore, ddPcR is strongly recommended in clinical practice for the diagnosis of cOVId-19 and the follow-up of positive patients until complete remission.
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.