We present Grobid-quantities, an open-source application for extracting and normalising measurements from scientific and patent literature. Tools of this kind, aiming to understand and make unstructured information accessible, represent the building blocks for large-scale Text and Data Mining (TDM) systems. Grobid-quantities is a module built on top of Grobid [6] [13], a machine learning framework for parsing and structuring PDF documents. Designed to process large quantities of data, it provides a robust implementation accessible in batch mode or via a REST API. The machine learning engine architecture follows the cascade approach, where each model is specialised in the resolution of a specific task. The models are trained using CRF (Conditional Random Field) algorithm [12] for extracting quantities (atomic values, intervals and lists), units (such as length, weight) and different value representations (numeric, alphabetic or scientific notation). Identified measurements are normalised according to the International System of Units (SI). Thanks to its stable recall and reliable precision, Grobid-quantities has been integrated as the measurement-extraction engine in various TDM projects, such as Marve (Measurement Context Extraction from Text), for extracting semantic measurements and meaning in Earth Science [10]. At the National Institute for Materials Science in Japan (NIMS), it is used in an ongoing project to discover new superconducting materials. Normalised materials characteristics (such as critical temperature, pressure) extracted from scientific literature are a key resource for materials informatics (MI) [9].
A growing number of papers are published in the area of superconducting materials science. However, novel text and data mining (TDM) processes are still needed to efficiently access and exploit this accumulated knowledge, paving the way towards data-driven materials design. Herein, we present SuperMat (Superconductor Materials), an annotated corpus of linked data derived from scientific publications on superconductors, which comprises 142 articles, 16052 entities, and 1398 links that are characterised into six categories: the names, classes, and properties of materials; links to their respective superconducting critical temperature (Tc); and parametric conditions such as applied pressure or measurement methods. The construction of SuperMat resulted from a fruitful collaboration between computer scientists and material scientists, and its high quality is ensured through validation by domain experts. The quality of the annotation guidelines was ensured by satisfactory Inter Annotator Agreement (IAA) between the annotators and the domain experts. SuperMat includes the dataset, annotation guidelines, and annotation support tools that use automatic suggestions to help minimise human errors.
In this study, we propose a staging area for ingesting new superconductors' experimental data in SuperCon that is machine-collected from scientific articles. Our objective is to enhance the efficiency of updating SuperCon while maintaining or enhancing the data quality. We present a semi-automatic staging area driven by a workflow combining automatic and manual processes on the extracted database. An anomaly detection automatic process aims to pre-screen the collected data. Users can then manually correct any errors through a user interface tailored to simplify the data verification on the original PDF documents. Additionally, when a record is corrected, its raw data is collected and utilised to improve machine learning models as training data. Evaluation experiments demonstrate that our staging area significantly improves curation quality. We compare the interface with the traditional manual approach of reading PDF documents and recording information in an Excel. Using the interface boosts the precision and recall by 6% and 50%, respectively to an average increase of 40% in F1-score.
This paper addresses the integration of a Named Entity Recognition and Disambiguation (NERD) service within a group of open access (OA) publishing digital platforms and considers its potential impact on both research and scholarly publishing. The software powering this service, called entity-fishing, was initially developed by Inria in the context of the EU FP7 project CENDARI and provides automatic entity recognition and disambiguation using the Wikipedia and Wikidata data sets. The application is distributed with an open-source licence, and it has been deployed as a web service in DARIAH's infrastructure hosted by the French HumaNum. In the paper, we focus on the specific issues related to its integration on five OA platforms specialized in the publication of scholarly monographs in the social sciences and humanities (SSH), as part of the work carried out within the EU H2020 project HIRMEOS (High Integration of Research Monographs in the European Open Science infrastructure). In the first section, we give a brief overview of the current status and evolution of OA publications, considering specifically the challenges that OA monographs are encountering. In the second part, we show how the HIRMEOS project aims to face these challenges by optimizing five OA digital platforms for the publication of monographs from the SSH and ensuring their interoperability. In sections three and four we give a comprehensive description of the entity-fishing service, focusing on its concrete applications in real use cases together with some further possible ideas on how to exploit the annotations generated. We show that entity-fishing annotations can improve both research and publishing process. In the last chapter, we briefly present further possible application scenarios that could be made available through infrastructural projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.