Immunological memory is thought to depend upon a stem cell-like, self-renewing population of lymphocytes capable of differentiating into effector cells in response to antigen re-exposure. Here we describe a long-lived human memory T-cell population that displays enhanced self-renewal and multipotent capacity to derive central memory, effector memory and effector T cells. These cells, specific for multiple viral and self-tumor antigens, were found within a CD45RO−, CCR7+, CD45RA+, CD62L+, CD27+, CD28+ and IL-7Rα+ T-cell compartment characteristic of naïve T cells. However, they expressed increased levels of CD95, IL-2Rβ, CXCR3, and LFA-1, and exhibited numerous functional attributes distinctive of memory cells. Compared to known memory populations, these lymphocytes displayed increased proliferative capacity, more efficiently reconstituted immunodeficient hosts and mediated superior anti-tumor responses in a humanized mouse model. The identification of a human stem cell-like memory T-cell population is of direct relevance to the design of vaccines and T-cell therapies.
Self-renewing cell populations such as hematopoietic stem cells and memory B and T lymphocytes might be regulated by shared signaling pathways1. Wnt/β-catenin is an evolutionarily conserved pathway that promotes hematopoietic stem cell self-renewal and multipotency by limiting stem cell proliferation and differentiation2,3, but its role in the generation and maintenance of memory T cells is unknown. We found that the induction of Wnt/β-catenin signaling using inhibitors of glycogen-sythase-kinase-3β or the Wnt protein family member, Wnt3a, arrested CD8+ T cell development into effector cells. By blocking T-cell differentiation, Wnt signaling enabled the generation of CD44low, CD62Lhigh, Sca-1high, CD122high, Bcl-2high self-renewing, multipotent CD8+ memory stem cells with proliferative and anti-tumor capacities exceeding those of central and effector memory T cell subsets. These findings reveal a key role for Wnt signaling in the maintenance of stemness in mature memory CD8+ T cells and have important implications for the design of novel vaccination strategies and adoptive immunotherapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.