A good deal of information on the thermodynamic properties of chromatin was derived in the last few years from optical melting experiments. The structural domains of the polynucleosomal chain, the linker, and the core particle denature as independent units. The differential scanning calorimetry profile of isolated chromatin is made up of three endotherms, at approximately 74, 90, and 107 degrees C, having an almost Gaussian shape. Previous work on this matter, however, was mainly concerned with the dependence of the transition enthalpy on external parameters, such as the ionic strength, or with the melting of nuclei from different sources. In this paper we report the structural assignment of the transitions of rat liver nuclei, observed at 58, 66, 75, 92, and 107 degrees C. They are representative of the quiescent state of the cell. The strategy adopted in this work builds on the method developed for the investigation of complex biological macromolecules. The heat absorption profile of the nucleus was related to the denaturation of isolated nuclear components; electron microscopy and electrophoretic techniques were used for their morphological and molecular characterization. The digestion of chromatin by endogenous nuclease mimics perfectly the decondensation of the higher order structure and represented the source of several misinterpretations. This point was carefully examined in order to define unambiguously the thermal profile of native nuclei. The low-temperature transitions, centered around 58 and 66 degrees C, arise from the melting of scaffolding structures and of the proteins associated with heterogeneous nuclear RNA.(ABSTRACT TRUNCATED AT 250 WORDS)
The radius of gyration of human plasma fibronectin was determined by light scattering both under conditions in which the molecule is in an extended conformation (ionic strength 1.01 M, pH 8) and close to its native, more compact conformation (ionic strength 0.16 M, pH 8). These values were found to be 17.5 +/‐ 0.8 nm and 10.7 +/‐ 0.9 nm respectively, for a constant mol. wt of 533,000 +/‐ 8000, in excellent agreement with the value of 520,000 deduced from its known composition. A set of models, each made of two identical, end‐to‐end joined chains of 28 beads, was then constructed, and their calculated physico‐chemical parameters were compared with those available for the whole fibronectin molecule and for some of its proteolytic fragments in both conformations. Two possible models for the circulating form are presented here: in both, the fibronectin molecule is in a compact, tangled conformation, with the amino‐terminal end of one chain folded over to the carboxy end of itself or of the other chain either in a hairpin or in a circular fashion. With the exception of the carboxy‐terminal fibrin(ogen)‐binding domains, all the domains appear to be well exposed to the solvent, and thus free to interact with potential ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.