In the present work we assess the capabilities of neural networks to predict temporally evolving turbulent flows. In particular, we use the nine-equation shear flow model by Moehlis et al. [New J. Phys. 6, 56 (2004)] to generate training data for two types of neural networks: the multilayer perceptron (MLP) and the long short-term memory (LSTM) network. We tested a number of neural network architectures by varying the number of layers, number of units per layer, dimension of the input, weight initialization and activation functions in order to obtain the best configurations for flow prediction. Due to its ability to exploit the sequential nature of the data, the LSTM network outperformed the MLP. The LSTM led to excellent predictions of turbulence statistics (with relative errors of 0.45% and 2.49% in mean and fluctuating quantities, respectively) and of the dynamical behavior of the system (characterized by Poincaré maps and Lyapunov exponents). This is an exploratory study where we consider a low-order representation of near-wall turbulence. Based on the present results, the proposed machine-learning framework may underpin future applications aimed at developing accurate and efficient data-driven subgrid-scale models for large-eddy simulations of more complex wall-bounded turbulent flows, including channels and developing boundary layers.
Two models based on convolutional neural networks are trained to predict the two-dimensional instantaneous velocity-fluctuation fields at different wall-normal locations in a turbulent open-channel flow, using the wall-shear-stress components and the wall pressure as inputs. The first model is a fully convolutional neural network (FCN) which directly predicts the fluctuations, while the second one reconstructs the flow fields using a linear combination of orthonormal basis functions, obtained through proper orthogonal decomposition (POD), and is hence named FCN-POD. Both models are trained using data from direct numerical simulations at friction Reynolds numbers $Re_{\tau } = 180$ and 550. Being able to predict the nonlinear interactions in the flow, both models show better predictions than the extended proper orthogonal decomposition (EPOD), which establishes a linear relation between the input and output fields. The performance of the models is compared based on predictions of the instantaneous fluctuation fields, turbulence statistics and power-spectral densities. FCN exhibits the best predictions closer to the wall, whereas FCN-POD provides better predictions at larger wall-normal distances. We also assessed the feasibility of transfer learning for the FCN model, using the model parameters learned from the $Re_{\tau }=180$ dataset to initialize those of the model that is trained on the $Re_{\tau }=550$ dataset. After training the initialized model at the new $Re_{\tau }$ , our results indicate the possibility of matching the reference-model performance up to $y^{+}=50$ , with $50\,\%$ and $25\,\%$ of the original training data. We expect that these non-intrusive sensing models will play an important role in applications related to closed-loop control of wall-bounded turbulence.
A fully-convolutional neural-network model is used to predict the streamwise velocity fields at several wall-normal locations by taking as input the streamwise and spanwise wall-shear-stress planes in a turbulent open channel flow. The training data are generated by performing a direct numerical simulation (DNS) at a friction Reynolds number of Reτ = 180. Various networks are trained for predictions at three inner-scaled locations (y+ = 15, 30, 50) and for different time steps between input samples Δt+ s. The inherent non-linearity of the neural-network model enables a better prediction capability than linear methods, with a lower error in both the instantaneous flow fields and turbulent statistics. Using a dataset with higher Δt+ s improves the generalization at all the considered wall-normal locations, as long as the network capacity is sufficient to generalize over the dataset. The use of a multiple-output network, with parallel dedicated branches for two wall-normal locations, does not provide any improvement over two separated single-output networks, other than a moderate saving in training time. Training time can be effectively reduced, by a factor of 4, via a transfer learning method that initializes the network parameters using the optimized parameters of a previously-trained network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.