To maintain proteostasis, cells must integrate information and activities that supervise protein synthesis, protein folding, conformational stability, and also protein degradation. Extrinsic and intrinsic conditions can both impact normal proteostasis, causing the appearance of proteotoxic stress. Initially, proteotoxic stress elicits adaptive responses aimed at restoring proteostasis, allowing cells to survive the stress condition. However, if the proteostasis restoration fails, a permanent and sustained proteotoxic stress can be deleterious, and cell death ensues. Many cancer cells convive with high levels of proteotoxic stress, and this condition could be exploited from a therapeutic perspective. Understanding the cell death pathways engaged by proteotoxic stress is instrumental to better hijack the proliferative fate of cancer cells.
Signaling pathways controlling necrosis are still mysterious and debated. We applied a shRNA-based viability screen to identify critical elements of the necrotic response. We took advantage from a small molecule (G5) that makes covalent adducts with free thiols by Michael addition and elicits multiple stresses. In cells resistant to apoptosis, G5 triggers necrosis through the induction of protein unfolding, glutathione depletion, ER stress, proteasomal impairments, and cytoskeletal stress. The kinase GSK3β was isolated among the top hits of the screening. Using the quinone DMNQ, a ROS generator, we demonstrate that GSK3β is involved in the regulation of ROS-dependent necrosis. Our results have been validated using siRNA and by knocking-out GSK3β with the CRISPR/Cas9 technology. In response to DMNQ GSK3β is activated by serine 9 dephosphorylation, concomitantly to Akt inactivation. During the quinone-induced pronecrotic stress, GSK3β gradually accumulates into the nucleus, before the collapse of the mitochondrial membrane potential. Accumulation of ROS in response to DMNQ is impaired by the absence of GSK3β. We provide evidence that the activities of the obligatory two-electrons reducing flavoenzymes, NQO1 (NAD(P)H quinone dehydrogenase 1) and NQO2 are required to suppress DMNQ-induced necrosis. In the absence of GSK3β the expression of NQO1 and NQO2 is dramatically increased, possibly because of an increased transcriptional activity of NRF2. In summary, GSK3β by blunting the anti-oxidant response and particularly NQO1 and NQO2 expression, favors the appearance of necrosis in response to ROS, as generated by the quinone DMNQ.
Leiomyosarcomas are rare and aggressive tumors characterized by a complex karyotype. Surgical resection with or without radiotherapy and chemotherapy is the standard curative treatment. Unfortunately, a high percentage of leiomyosarcomas recurs and metastasizes. In these cases, doxorubicin and ifosfamide represent the standard treatment but with low response rates. Here, we evaluated the induction of proteotoxic stress as a possible strategy to kill leiomyosarcoma cells in a therapeutic perspective. We show that aggressive leiomyosarcomas coexist with high levels of proteotoxic stress. As a consequence, we hypothesized that leiomyosarcoma cells are vulnerable to further increases of proteotoxic stress. The small compound 2c is a strong inducer of proteotoxic stress. In leiomyosarcoma cells, it triggers cell death coupled to a profound reorganization of the mitochondrial network. By using stimulated emission depletion microscopy, we have unveiled the existence of DIABLO/SMAC clusters that are modulated by 2c. Finally, we have engineered a new version of 2c linked to polyethylene glycol though a short peptide, named 2cPP. This new prodrug is specifically activated by proteases present in the tumor microenvironment. 2cPP shows a strong antitumor activity in vivo against leiomyosarcomas and no toxicity against normal cells.
To maintain proteostasis, cells must integrate information and activities that supervise protein synthesis, protein folding, conformational stability, and also protein degradation. Extrinsic and intrinsic conditions can both impact on normal proteostasis, causing the appearance of proteotoxic stress. Initially, proteotoxic stress elicits adaptive responses aimed to restore proteostasis, allowing cells to survival the stress condition. However, if the proteostasis restoration fails, a permanent and sustained proteotoxic stress can be deleterious and cell death ensues. Many cancer cells convive with high levels of proteotoxic stress and this condition could be exploited in a therapeutic perspective. Understanding the cell death pathways engaged by proteotoxic stress is instrumental to better hijack the proliferative fate of cancer cells.
Leiomyosarcoma (LMS) is aggressive cancer with few therapeutic options. LMS cells are more sensitive to proteotoxic stress compared to normal smooth muscle cells. We used small compound 2c to induce proteotoxic stress and compare the transcriptomic adaptations of immortalized human uterine smooth muscle cells (HUtSMC) and LMS cells SK-UT-1. We found that the expression of the heat shock proteins (HSPs) gene family is upregulated with higher efficiency in normal cells. In contrast, the upregulation of BH3-only proteins is higher in LMS cells. HSF1, the master regulator of HSP transcription, is sequestered into transcriptionally incompetent nuclear foci only in LMS cells, which explains the lower HSP upregulation. We also found that several compounds can enhance the cell death response to proteotoxic stress. Specifically, when low doses were used, an inhibitor of salt-inducible kinases (SIKs) and the inhibitor of IRE1α, a key element of the unfolded protein response (UPR), support proteotoxic-induced cell death with strength in LMS cells and without effects on the survival of normal cells. Overall, our data provide an explanation for the higher susceptibility of LMS cells to proteotoxic stress and suggest a potential option for co-treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.