In analgesic clinical trials, adverse events are reported for the painkiller under evaluation and compared with adverse events in the placebo group. Interestingly, patients who receive the placebo often report a high frequency of adverse events, but little is understood about the nature of these negative effects. In the present study, we compared the rates of adverse events reported in the placebo arms of clinical trials for three classes of anti-migraine drugs: NSAIDs, triptans and anticonvulsants. We identified 73 clinical trials in 69 studies describing adverse events in placebo groups: 8 were clinical trials with NSAIDs, 56 were trials with triptans, and 9 were trials with anticonvulsants. Studies were selected of all Medline/PubMed or CENTRAL referenced trials published until 2007. Adverse event profiles of the three classes were compared using a systematic review approach. We found that the rate of adverse events in the placebo arms of trials with anti-migraine drugs was high. In addition, and most interestingly, the adverse events in the placebo arms corresponded to those of the anti-migraine medication against which the placebo was compared. For example, anorexia and memory difficulties, which are typical adverse events of anticonvulsants, were present only in the placebo arm of these trials. These results suggest that the adverse events in placebo arms of clinical trials of anti-migraine medications depend on the adverse events of the active medication against which the placebo is compared. These findings are in accordance with the expectation theory of placebo and nocebo effects.
Following destruction or deafferentation of primary visual cortex (area V1, striate cortex), clinical blindness ensues, but residual visual functions may, nevertheless, persist without perceptual consciousness (a condition termed blindsight). The study of patients with such lesions thus offers a unique opportunity to investigate what visual capacities are mediated by the extrastriate pathways that bypass V1. Here we provide evidence for a crucial role of the collicular-extrastriate pathway in nonconscious visuomotor integration by showing that, in the absence of V1, the superior colliculus (SC) is essential to translate visual signals that cannot be consciously perceived into motor outputs. We found that a gray stimulus presented in the blind field of a patient with unilateral V1 loss, although not consciously seen, can influence his behavioral and pupillary responses to consciously perceived stimuli in the intact field (implicit bilateral summation). Notably, this effect was accompanied by selective activations in the SC and in occipito-temporal extrastriate areas. However, when instead of gray stimuli we presented purple stimuli, which predominantly draw on S-cones and are thus invisible to the SC, any evidence of implicit visuomotor integration disappeared and activations in the SC dropped significantly. The present findings show that the SC acts as an interface between sensory and motor processing in the human brain, thereby providing a contribution to visually guided behavior that may remain functionally and anatomically segregated from the geniculo-striate pathway and entirely outside conscious visual experience.
The present study used the redundant target paradigm on healthy subjects to investigate functional hemispheric asymmetries and interhemispheric cooperation in the perception of emotions from faces. In Experiment 1 participants responded to checkerboards presented either unilaterally to the left (LVF) or right visual half field (RVF), or simultaneously to both hemifields (BVF), while performing a pointing task for the control of eye movements. As previously reported (Miniussi et al. in J Cogn Neurosci 10:216-230, 1998), redundant stimulation led to shorter latencies for stimulus detection (bilateral gain or redundant target effect, RTE) that exceeded the limit for a probabilistic interpretation, thereby validating the pointing procedure and supporting interhemispheric cooperation. In Experiment 2 the same pointing procedure was used in a go/no-go task requiring subjects to respond when seeing a target emotional expression (happy or fearful, counterbalanced between blocks). Faster reaction times to unilateral LVF than RVF emotions, regardless of valence, indicate that the perception of positive and negative emotional faces is lateralized toward the right hemisphere. Simultaneous presentation of two congruent emotional faces, either happy or fearful, produced an RTE that cannot be explained by probability summation and suggests interhemispheric cooperation and neural summation. No such effect was present with BVF incongruent facial expressions. In Experiment 3 we studied whether the RTE for emotional faces depends on the physical identity between BVF stimuli, and we set a second BVF congruent condition in which there was only emotional but not physical or gender identity between stimuli (i.e. two different faces expressing the same emotion). The RTE and interhemispheric cooperation were present also in this second BVF congruent condition. This shows that emotional congruency is the sufficient condition for the RTE to take place in the intact brain and that the cerebral hemispheres can interact in spite of physical differences between stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.