Autonomous poststroke rehabilitation systems which can be deployed outside hospital with no or reduced supervision have attracted increasing amount of research attentions due to the high expenditure associated with the current inpatient stroke rehabilitation systems. To realize an autonomous systems, a reliable patient monitoring technique which can automatically record and classify patient's motion during training sessions is essential. In order to minimize the cost and operational complexity, the combination of nonvisual-based inertia sensing devices and pattern recognition algorithms are often considered more suitable in such applications. However, the high motion irregularity due to stroke patients' body function impairment has significantly increased the classification difficulty. A novel fuzzy kernel motion classifier specifically designed for stroke patient's rehabilitation training motion classification is presented in this paper. The proposed classifier utilizes geometrically unconstrained fuzzy membership functions to address the motion class overlapping issue, and thus, it can achieve highly accurate motion classification even with poorly performed motion samples. In order to validate the performance of the classifier, experiments have been conducted using real motion data sampled from stroke patients with a wide range of impairment level and the results have demonstrated that the proposed classifier is superior in terms of error rate compared to other popular algorithms.
Clinical assessment plays a major role in post-stroke rehabilitation programs for evaluating impairment level and tracking recovery progress. Conventionally, this process is manually performed by clinicians using chart-based ordinal scales which can be both subjective and inefficient. In this paper, a novel approach based on fuzzy logic is proposed which automatically evaluates stroke patients' impairment level using single-channel surface electromyography (sEMG) signals and generates objective classification results based on the widely used Brunnstrom stages of recovery. The correlation between stroke-induced motor impairment and sEMG features on both time and frequency domain is investigated, and a specifically designed fuzzy kernel classifier based on geometrically unconstrained membership function is introduced in the study to tackle the challenges in discriminating data classes with complex separating surfaces. Experiments using sEMG data collected from stroke patients have been carried out to examine the validity and feasibility of the proposed method. In order to ensure the generalization capability of the classifier, a cross-validation test has been performed. The results, verified using the evaluation decisions provided by an expert panel, have reached a rate of success of the 92.47%. The proposed fuzzy classifier is also compared with other pattern recognition techniques to demonstrate its superior performance in this application.
In this paper, a new approach is presented for the evaluation of membership functions in fuzzy clustering algorithms. Starting from the geometrical representation of clusters by polygons, the fuzzy membership is evaluated through a suited point-to-polygon distance estimation. Three different methods are proposed, either by using the geometrical properties of clusters in the data space or by using Gaussian or coneshaped kernel functions. They differ from the basic trade-off between computational complexity and approximation accuracy. By the proposed approach, fuzzy clusters of any geometrical complexity can be used, since there is no longer required to impose constraints on the shape of clusters resulting from the choice of computationally affordable membership functions. The methods illustrated in the paper are validated in terms of speed and accuracy by using several numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.