Structure determination of filamentous molecular complexes involves the selection of filaments from cryo-EM micrographs. The automatic selection of helical specimens is particularly difficult, and thus many challenging samples with issues such as contamination or aggregation are still manually picked. Here, two approaches for selecting filamentous complexes are presented: one uses a trained deep neural network to identify the filaments and is integrated in SPHIRE-crYOLO, while the other, called SPHIRE-STRIPER, is based on a classical line-detection approach. The advantage of the crYOLO-based procedure is that it performs accurately on very challenging data sets and selects filaments with high accuracy. Although STRIPER is less precise, the user benefits from less intervention, since in contrast to crYOLO, STRIPER does not require training. The performance of both procedures on Tobacco mosaic virus and filamentous F-actin data sets is described to demonstrate the robustness of each method.
Study on the criteria for assessing skull-face correspondence in craniofacial superimposition, Legal Medicine (2016), doi: http://dx.doi.org/10. 1016/j.legalmed.2016.09.009 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractCraniofacial superimposition has the potential to be used as an identification method when other traditional biological techniques are not applicable due to insufficient quality or absence of ante-mortem and post-mortem data. Despite having been used in many countries as a method of inclusion and exclusion for over a century it lacks standards. Thus, the purpose of this research is to provide forensic practitioners with standard criteria for analysing skull-face relationships. Thirty-seven experts from 16 different institutions participated in this study, which consisted of evaluating 65 criteria for assessing skull-face anatomical consistency on a sample of 24 different skull-face superimpositions. An unbiased statistical analysis established the most objective and discriminative criteria. Results did not show strong associations, however, important insights to address lack of standards were provided. In addition, a novel methodology for understanding and standardizing identification methods based on the observation of morphological patterns has been proposed.
Structure determination of filamentous molecular complexes involves the selection of filaments from cryo-EM micrographs. The automatic selection of helical specimens is particularly difficult and thus many challenging samples with issues such as contamination or aggregation are still manually picked. Here we present two approaches for selecting filamentous complexes: one uses a trained deep neural network to identify the filaments and is integrated in SPHIRE-crYOLO, the other one, called SPHIRE-STRIPER, is based on a classical line detection approach. The advantage of the crYOLO based procedure is that it accurately performs on very challenging data sets and selects filaments with high accuracy.Although STRIPER is less precise, the user benefits from less intervention, since in contrast to crYOLO, STRIPER does not require training. We evaluate the performance of both procedures on tobacco mosaic virus and filamentous F-actin data sets to demonstrate the robustness of each method.
Sex determination on skeletal remains is one of the most important diagnosis in forensic cases and in demographic studies on ancient populations. Our purpose is to realize an automatic operator-independent method to determine the sex from the bone shape and to test an intelligent, automatic pattern recognition system in an anthropological domain. Our multiple-classifier system is based exclusively on the morphological variants of a curve that represents the sagittal profile of the calvarium, modeled via artificial neural networks, and yields an accuracy higher than 80 %. The application of this system to other bone profiles is expected to further improve the sensibility of the methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.