We extend the concept of a classical two-person static game to the quantum domain, by giving an Hilbert structure to the space of classical strategies and studying the Battle of the Sexes game. We show that the introduction of entangled strategies leads to a unique solution of this game.
We relate the notion of entanglement for quantum systems composed of two identical constituents to the impossibility of attributing a complete set of properties to both particles. This implies definite constraints on the mathematical form of the state vector associated with the whole system. We then analyze separately the cases of fermion and boson systems, and we show how the consideration of both the Slater-Schmidt number of the fermionic and bosonic analog of the Schmidt decomposition of the global state vector and the von Neumann entropy of the one-particle reduced density operators can supply us with a consistent criterion for detecting entanglement. In particular, the consideration of the von Neumann entropy is particularly useful in deciding whether the correlations of the considered states are simply due to the indistinguishability of the particles involved or are a genuine manifestation of the entanglement. The treatment leads to a full clarification of the subtle aspects of entanglement of two identical constituents which have been a source of embarrassment and of serious misunderstandings in the recent literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.