Importance sampling methods are broadly used to approximate posterior distributions or some of their moments. In its standard approach, samples are drawn from a single proposal distribution and weighted properly. However, since the performance depends on the mismatch between the targeted and the proposal distributions, several proposal densities are often employed for the generation of samples. Under this multiple importance sampling (MIS) scenario, many works have addressed the selection and adaptation of the proposal distributions, interpreting the sampling and the weighting steps in different ways. In this paper, we establish a novel general framework for sampling and weighting procedures when more than one proposal is available. The most relevant MIS schemes in the literature are encompassed within the new framework, and novel valid schemes appear naturally. All the MIS schemes are compared and ranked in terms of the variance of the associated estimators. Finally, we provide illustrative examples revealing that, even with a good choice of the proposal densities, a careful interpretation of the sampling and weighting procedures can make a significant difference in the performance of the method.
The Effective Sample Size (ESS) is an important measure of efficiency of Monte Carlo methods such as Markov Chain Monte Carlo (MCMC) and Importance Sampling (IS) techniques. In the IS context, an approximation ESS of the theoretical ESS definition is widely applied, involving the inverse of the sum of the squares of the normalized importance weights. This formula, ESS, has become an essential piece within Sequential Monte Carlo (SMC) methods, to assess the convenience of a resampling step. From another perspective, the expression ESS is related to the Euclidean distance between the probability mass described by the normalized weights and the discrete uniform probability mass function (pmf). In this work, we derive other possible ESS functions based on different discrepancy measures between these two pmfs. Several examples are provided involving, for instance, the geometric mean of the weights, the discrete entropy (including the perplexity measure, already proposed in literature) and the Gini coefficient among others. We list five theoretical requirements which a generic ESS function should satisfy, allowing us to classify different ESS measures. We also compare the most promising ones by means of numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.