Our group has recently developed gene@home, a BOINC project that permits to search for candidate genes for the expansion of a gene regulatory network using gene expression data. The gene@home project adopts intensive variablesubsetting strategies enabled by the computational power provided by the volunteers who have joined the project by means of the BOINC client, and exploits the PC algorithm for discovering putative causal relationships within each subset of variables. This paper presents our TN-Grid infrastructure that is hosting the gene@home project. Gene@home implements a novel method for Network Expansion by Subsetting and Ranking Aggregation (NESRA), producing a list of genes that are candidates for the gene network expansion task. NESRA is an algorithm that has: 1) a ranking procedure that systematically subsets the variables; the subsetting is iterated several times and a ranked list of candidates is produced by counting the number of times a relationship is found; 2) several ranking steps are executed with different values of the dimension of the subsets and with different number of iterations producing several ranked lists; 3) the ranked lists are aggregated by using a state-of-the-art ranking aggregator. In our experimental results, we show that a single ranking step is enough to outperform both PC and PC*. Evaluations and experiments are done by means of the gene@home project on a real gene regulatory network of the model plant Arabidopsis thaliana.
In recent years the scientific community has been heavily engaged in studying the grapevine response to climate change. Final goal is the identification of key genetic traits to be used in grapevine breeding and the setting of agronomic practices to improve climatic resilience. The increasing availability of transcriptomic studies, describing gene expression in many tissues and developmental, or treatment conditions, have allowed the implementation of gene expression compendia, which enclose a huge amount of information. The mining of transcriptomic data represents an effective approach to expand a known local gene network (LGN) by finding new related genes. We recently published a pipeline based on the iterative application of the PC-algorithm, named NES2RA, to expand gene networks in Escherichia coli and Arabidopsis thaliana. Here, we propose the application of this method to the grapevine transcriptomic compendium Vespucci, in order to expand four LGNs related to the grapevine response to climate change. Two networks are related to the secondary metabolic pathways for anthocyanin and stilbenoid synthesis, involved in the response to solar radiation, whereas the other two are signaling networks, related to the hormones abscisic acid and ethylene, possibly involved in the regulation of cell water balance and cuticle transpiration. The expansion networks produced by NES2RA algorithm have been evaluated by comparison with experimental data and biological knowledge on the identified genes showing fairly good consistency of the results. In addition, the algorithm was effective in retaining only the most significant interactions among the genes providing a useful framework for experimental validation. The application of the NES2RA to Vitis vinifera expression data by means of the BOINC-based implementation is available upon request (valter.cavecchia@cnr.it).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.