Sodium homeostasis in terrestrial and freshwater vertebrates is controlled by the corticosteroid hormones, principally aldosterone, which stimulate electrogenic Na ؉ absorption in tight epithelia. Although aldosterone is known to increase apical membrane Na ؉ permeability in target cells through changes in gene transcription, the mechanistic basis of this effect remains poorly understood. The predominant early effect of aldosterone is to increase the activity of the epithelial sodium channel (ENaC), although ENaC mRNA and protein levels do not change initially.Rather, the open probability and͞or number of channels in the apical membrane are greatly increased by unknown modulators. To identify hormone-stimulated gene products that modulate ENaC activity, a subtracted cDNA library was generated from A6 cells, a stable cell line of renal distal nephron origin, and the effect of candidates on ENaC activity was tested in a coexpression assay. We report here the identification of sgk (serum and glucocorticoid-regulated kinase), a member of the serine-threonine kinase family, as an aldosterone-induced regulator of ENaC activity. sgk mRNA and protein were strongly and rapidly hormone stimulated both in A6 cells and in rat kidney. Furthermore, sgk stimulated ENaC activity approximately 7-fold when they were coexpressed in Xenopus laevis oocytes. These data suggest that sgk plays a central role in aldosterone regulation of Na ؉ absorption and thus in the control of extracellular f luid volume, blood pressure, and sodium homeostasis.
Amino-acid transport across cellular plasma membranes depends on several parallel-functioning (co-)transporters and exchangers. The widespread transport system L accounts for a sodium-independent exchange of large, neutral amino acids, whereas the system y(+)L exchanges positively charged amino acids and/or neutral amino acids together with sodium. The molecular nature of these transporters remains unknown, although expression of the human cell-surface glycoprotein 4F2 heavy chain (h4F2hc; CD98 in the mouse) is known to induce low levels of L- and/or y(+)L-type transport. This glycoprotein is found in activated lymphocytes, together with an uncharacterized, disulphide-linked lipophilic light chain with an apparent relative molecular mass of 40,000 (M(r) 40K). Here we identify the permease-related protein E16 as the first light chain of h4F2hc and show that the resulting heterodimeric complex mediates L-type amino-acid transport. The homologous protein from Schistosoma mansoni, SPRM1, also associates covalently with coexpressed h4F2hc glycoprotein, although it induces amino-acid transport of different substrate specificity. The coexpression of h4F2hc is required for surface expression of these permease-related light chains, which belong to a new family of amino-acid transporters that form heterodimers with cell-surface glycoproteins.
The early aldosterone-induced increase in Na reabsorption across tight epithelia is characterized by a transcription-dependent activation of epithelial Na channels (ENaC) and pumps (Na,K-ATPase). In order to contribute towards the identification of transcriptionally regulated mediators of this process, we first tested mRNAs of proteins previously suggested to be involved. Epithelia were treated for 1 h with 10(-6 )M aldosterone, a concentration which produces a maximal transport response and at which both mineralo- and glucocorticoid receptors are occupied. Northern blot analysis showed no change in mRNAs of trimeric G protein alpha subunits, calmodulin, and mitochondrial energy metabolism proteins, whereas Na,K-ATPase alpha1 and beta1 subunit mRNAs were slightly increased (1.2- to 1.4-fold). In a second approach, we visualized 5000 cDNA bands generated from A6 RNAs by differential display polymerase chain reaction (PCR). After 1 h of aldosterone treatment, approximately 0.5% of these appeared to be regulated. Four cDNA fragments corresponding to early adrenal-steroid-upregulated RNAs (ASURs) were cloned and for two of them cDNAs containing entire coding sequences were isolated by library screening. ASUR4 is the Xenopus laevis homologue of human E16 and rat TA1, a membrane protein structurally related to yeast and prokaryotic permeases, and ASUR5 is the A transcript of Xenopus K-ras2. The rapid inductions of the four ASURs correspond to direct transcriptional effects since they were not inhibited by cycloheximide but were blocked by actinomycin D. The K1/2 values were similar or slightly below those reported for stimulation of Na transport. These characteristics of RNA accumulation and their time courses suggest a possible role of one of these induced RNAs in the mediation of the early effect of aldosterone on Na transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.