The present study aims at developing a quantitative structure–activity relationship (QSAR) model for the determination of gut permeability of 228 pharmacological drugs at different pH conditions (3, 5, 7.4, 9, intrinsic). As a consequence, five different datasets (according to the diverse permeability shown by the compounds at the different pH values) were handled, with the aim of discriminating compounds as low-permeable or high-permeable. In order to achieve this goal, molecular descriptors for all the investigated compounds were computed and then classification models calculated by means of partial least squares discriminant analysis (PLS-DA). A high predictive capability was achieved for all models, providing correct classification rates in external validation between 80% and 96%. In order to test whether a reduction in the molecular descriptors would improve predictions and provide information about the most relevant variables, a feature selection approach, covariance selection, was used to select the most relevant subsets of predictors. This led to a slight improvement in the predictive accuracies, and it has indicated that the most relevant descriptors for the discrimination of the investigated compounds into low- and high-permeable were associated with the 2D and 3D structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.