Artificial neural networks with stacked autoencoders detected Alzheimer's dementia patients based on EEG and structural MRI variables. Classification accuracies over control participants reached 80% (EEG), 85% (MRI), and 89% (both). These results motivate future multi-centric, harmonized prospective and longitudinal crossvalidation studies.
a b s t r a c tObjective: This retrospective and exploratory study tested the accuracy of artificial neural networks (ANNs) at detecting Alzheimer's disease patients with dementia (ADD) based on input variables extracted from resting-state electroencephalogram (rsEEG), structural magnetic resonance imaging (sMRI) or both. Methods: For the classification exercise, the ANNs had two architectures that included stacked (autoencoding) hidden layers recreating input data in the output. The classification was based on LORETA source estimates from rsEEG activity recorded with 10-20 montage system (19 electrodes) and standard sMRI variables in 89 ADD and 45 healthy control participants taken from a national database. Results: The ANN with stacked autoencoders and a deep leaning model representing both ADD and control participants showed classification accuracies in discriminating them of 80%, 85%, and 89% using rsEEG, sMRI, and rsEEG + sMRI features, respectively. The two ANNs with stacked autoencoders and a deep leaning model specialized for either ADD or control participants showed classification accuracies of 77%, 83%, and 86% using the same input features.
In this work, we study an application of fractional-order Hopfield neural networks for optimization problem solving. The proposed network was simulated using a semi-analytical method based on Adomian decomposition,, and it was applied to the on-line estimation of time-varying parameters of nonlinear dynamical systems. Through simulations, it was demonstrated how fractional-order neurons influence the convergence of the Hopfield network, improving the performance of the parameter identification process if compared with integer-order implementations. Two different approaches for computing fractional derivatives were considered and compared as a function of the fractional-order of the derivatives: the Caputo and the Caputo–Fabrizio definitions. Simulation results related to different benchmarks commonly adopted in the literature are reported to demonstrate the suitability of the proposed architecture in the field of on-line parameter estimation.
We propose a methodology based on reservoir computing for mapping local proprioceptive information acquired at the level of the leg joints of a simulated quadruped robot into exteroceptive and global information, including both the ground reaction forces at the level of the different legs and information about the type of terrain traversed by the robot. Both dynamic estimation and terrain classification can be achieved concurrently with the same reservoir computing structure, which serves as a soft sensor device. Simulation results are presented together with preliminary experiments on a real quadruped robot. They demonstrate the suitability of the proposed approach for various terrains and sensory system fault conditions. The strategy, which belongs to the class of data-driven models, is independent of the robotic mechanical design and can easily be generalized to different robotic structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.