Coherent, broadband pulses of extreme ultraviolet (XUV) light provide a new and exciting tool for exploring attosecond electron dynamics. Using photoelectron streaking, interferometric spectrograms can be generated that contain a wealth of information about the phase properties of the photoionization process. If properly retrieved, this phase information reveals attosecond dynamics during photoelectron emission such as multielectron dynamics and resonance processes. However, until now, the full retrieval of the continuous electron wavepacket phase from isolated attosecond pulses has remained challenging. Here, after elucidating key approximations and limitations that hinder one from extracting the coherent electron wavepacket dynamics using available retrieval algorithms, we present a new method called Absolute Complex Dipole transmission matrix element reConstruction (ACDC). We apply the ACDC method to experimental spectrograms to resolve the phase and group delay difference between photoelectrons emitted from Ne and Ar. Our results reveal subtle dynamics in this group delay difference of photoelectrons emitted form Ar. These group delay dynamics were not resolvable with prior methods that were only able to extract phase information at discrete energy levels, emphasizing the importance of a complete and continuous phase retrieval technique such as ACDC. Here we also make this new ACDC retrieval algorithm available with appropriate citation in return.
In this study we investigate the dissociative photoionization of molecular hydrogen H2, addressing the influence of autoionizing states and nuclear motion on the photoelectron dynamics. Experimental results are compared with ab initio calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.