In this paper, we provide a novel approach to the architectural design of deep Recurrent Neural Networks using signal frequency analysis. In particular, focusing on the Reservoir Computing framework and inspired by the principles related to the inherent effect of layering, we address a fundamental open issue in deep learning, namely the question of how to establish the number of layers in recurrent architectures in the form of deep echo state networks (DeepESNs). The proposed method is first analyzed and refined on a controlled scenario and then it is experimentally assessed on challenging real-world tasks. The achieved results also show the ability of properly designed DeepESNs to outperform RC approaches on a speech recognition task, and to compete with the state-of-the-art in time-series prediction on polyphonic music tasks.
The objective of this work is the development of a learning system for the automatic assessment of balance abilities in elderly people. The system is based on estimating the Berg Balance Scale (BBS) score from the stream of sensor data gathered by a Wii Balance Board. The scientific challenge tackled by our investigation is to assess the feasibility of exploiting the richness of the temporal signals gathered by the balance board for inferring the complete BBS score based on data from a single BBS exercise. The relation between the data collected by the balance board and the BBS score is inferred by neural networks for temporal data, modeled in particular as Echo State Networks within the Reservoir Computing (RC) paradigm, as a result of a comprehensive comparison among different learning models. The proposed system results to be able to estimate the complete BBS score directly from temporal data on exercise #10 of the BBS test, with â\u89\u8810 s of duration. Experimental results on real-world data show an absolute error below 4 BBS score points (i.e. below the 7% of the whole BBS range), resulting in a favorable trade-off between predictive performance and user's required time with respect to previous works in literature. Results achieved by RC models compare well also with respect to different related learning models. Overall, the proposed system puts forward as an effective tool for an accurate automated assessment of balance abilities in the elderly and it is characterized by being unobtrusive, easy to use and suitable for autonomous usage
We present a simple user-friendly library called ReservoirPy based on Python scientific modules. It provides a flexible interface to implement efficient Reservoir Computing (RC) architectures with a particular focus on Echo State Networks (ESN). Advanced features of Reser-voirPy allow to improve up to 87.9% of computation time efficiency on a simple laptop compared to basic Python implementation. Overall, we provide tutorials for hyperparameters tuning, offline and online training, fast spectral initialization, parallel and sparse matrix computation on various tasks (MackeyGlass and audio recognition tasks). In particular, we provide graphical tools to easily explore hyperparameters using random search with the help of the hyperopt library.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.