Despite some remarkable innovations and the advent of novel molecular classifications the prognosis of patients with advanced gastric cancer (GC) remains overall poor and current clinical application of new advances is disappointing. During the last years only Trastuzumab and Ramucirumab have been approved and currently used as standard of care targeted therapies, but the systemic management of advanced disease did not radically change in contrast with the high number of molecular drivers identified. The Cancer Genome Atlas (TCGA) and Asian Cancer Research Group (ACRG) classifications paved the way, also for GC, to that more contemporary therapeutic approach called “precision medicine” even if tumor heterogeneity and a complex genetic landscape still represent a strong barrier. The identification of specific cancer subgroups is also making possible a better selection of patients that are most likely to respond to immunotherapy. This review aims to critically overview the available molecular classifications summarizing the main druggable molecular drivers and their possible therapeutic implications also taking advantage of new technologies and acquisitions.
Gastric cancer (GC) is the fifth-most common cancer worldwide and an important cause of cancer-related-death. The growing knowledge of its molecular pathogenesis has shown that GC is not a single entity, but a constellation of different diseases, each with its own molecular and clinical characteristics. Currently, surgery represents the only curative approach for localized GC, but only 20% of patients (pts) showed resectable disease at diagnosis and, even in case of curative resection, the prognosis remains poor due to the high rate of disease relapse. In this context, multimodal perioperative approaches were developed in western and eastern countries in order to decrease relapse rates and improve survival. However, there is little consensus about the optimal treatment for non-metastatic GC. In this review, we summarize the current status and future developments of perioperative chemotherapy in resectable GC, attempting to find clear answers to the real problems in clinical practice.
Pancreatic cancer represents one of the most lethal disease worldwide but still orphan of a molecularly driven therapeutic approach, although many genomic and transcriptomic classifications have been proposed over the years. Clinical heterogeneity is a hallmark of this disease, as different patients show different responses to the same therapeutic regimens. However, genomic analyses revealed quite a homogeneous disease picture, with very common mutations in four genes only (KRAS, TP53, CDKN2A, and SMAD4) and a long tail of other mutated genes, with doubtful pathogenic meaning. Even bulk transcriptomic classifications could not resolve this great heterogeneity, as many informations related to small cell populations within cancer tissue could be lost. At the same time, single cell analysis has emerged as a powerful tool to dissect intratumoral heterogeneity like never before, with possibility of generating a new disease taxonomy at unprecedented molecular resolution. In this review, we summarize the most relevant genomic, bulk and single-cell transcriptomic classifications of pancreatic cancer, and try to understand how novel technologies, like single cell analysis, could lead to novel therapeutic strategies for this highly lethal disease.
Muscle invasive bladder cancer (MIBC) is a widespread malignancy with a worse prognosis often related to a late diagnosis. For early-stage MIBC pts, a multidisciplinary approach is mandatory to evaluate the timing of neoadjuvant chemotherapy (NAC) and surgery. The current standard therapy is platinum-based NAC (MVAC-methotrexate, vinblastine, doxorubicin, and cisplatin or Platinum–Gemcitabine regimens) followed by radical cystectomy (RC) with lymphadenectomy. However, preliminary data from Vesper trial highlighted that dose-dense NAC MVAC is endowed with a good pathological response but shows low tolerability. In the last few years, translational-based research approaches have identified several candidate biomarkers of NAC esponsiveness , such as ERCC2, ERBB2, or DNA damage response (DDR) gene alterations. Moreover, the recent consensus MIBC molecular classification identified six molecular subtypes, characterized by different sensitivity to chemo- or targeted or immunotherapy, that could open a novel procedure for patient selection and also for neoadjuvant therapies. The Italian PURE-01 phase II Trial extended data on efficacy and resistance to Immune Checkpoint Inhibitors (ICIs) in this setting. In this review, we summarize the most relevant literature data supporting NAC use in MIBC, focusing on novel therapeutic strategies such as immunotherapy, considering the better patient stratification and selection emerging from novel molecular classification.
Background High neutrophil to lymphocyte ratio (NLR) has shown to be a predictor of poor outcomes in various malignancies, including pancreatic cancer. Methods We assessed 70 consecutive pts with histologically confirmed mPC who received chemotherapy with nab-paclitaxel/gemcitabine at two different European oncologic centers between January 2012 and November 2015. Variables assessed for prognostic correlations included age ≥ 66, sex, Karnofsky PS score, primary tumor site, baseline CA19.9 level ≥ 59xULN, 12-week decrease of the CA19.9 level ≥ 50% from baseline, basal bilirubin level, baseline NLR, biliary stent implantation, and liver metastasis. Survival analyses were generated according to the Kaplan-Meier method. Univariate and multivariate analyses were performed by a Cox proportional hazard model. Results According to NLR values, the patients were divided into two groups: high and low. Low group patients showed a better median PFS (7 months versus 5 months) and median OS (13 months versus 7 months) in respect to high group patients. At multivariate analysis, Karnofsky PS < 80% (HR = 0.4; CI 0.2–1.2), liver metastases (HR = 0.4; CI 0.18–0.82), and NLR ≥ 5 (HR = 2.7; 95% CI 1.4–5.2) were predictors of poorer OS. Based on the presence of one or more independent prognostic factors, three risk categories were identified: good-risk, intermediate-risk and poor-risk. The median OS was 22, 10, and 7 months, respectively. Conclusions Baseline NLR is an independent predictor of survival of patients with mPC receiving palliative chemotherapy and could be useful to develop a simple clinical score to identify a subgroup of patients with a low chance to benefit from chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.