In this paper we deal with the problem of determining perfectly insulating regions (cavities) from boundary measurements in a nonlinear elliptic equation arising from cardiac electrophysiology. With minimal regularity assumptions on the cavities, we first show well-posedness of the direct problem and then prove uniqueness of the inverse problem. Finally, we propose a new reconstruction algorithm by means of a phase-field approach rigorously justified via Γ-convergence.
In this paper we develop a reconstruction algorithm for the solution of an inverse boundary value problem dealing with a semilinear elliptic partial differential equation of interest in cardiac electrophysiology. The goal is the detection of small inhomogeneities located inside a domain Ω, where the coefficients of the equation are altered, starting from observations of the solution of the equation on the boundary ∂Ω. Exploiting theoretical results recently achieved in [11], we implement a reconstruction procedure based on the computation of the topological gradient of a suitable cost functional. Numerical results obtained for several test cases finally assess the feasibility and the accuracy of the proposed technique.
In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, timedependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity ω (where the coefficients of the equation are altered) located inside a domain Ω starting from observations of the potential on the boundary ∂Ω. Such a problem is related to the detection of myocardial ischemic regions, characterized by severely reduced blood perfusion and consequent lack of electric conductivity. In the first part of the paper we provide an asymptotic formula for electric potential perturbations caused by internal conductivity inhomogeneities of low volume fraction, extending the results published in [7] to the case of three-dimensional, parabolic problems. In the second part we implement a reconstruction procedure based on the topological gradient of a suitable cost functional. Numerical results obtained on an idealized three-dimensional left ventricle geometry for different measurement settings assess the feasibility and robustness of the algorithm.
We propose a novel convolutional neural network (CNN), called \Psi DONet, designed for learning pseudodifferential operators (\Psi DOs) in the context of linear inverse problems. Our starting point is the iterative soft thresholding algorithm (ISTA), a well-known algorithm to solve sparsity-promoting minimization problems. We show that, under rather general assumptions on the forward operator, the unfolded iterations of ISTA can be interpreted as the successive layers of a CNN, which in turn provides fairly general network architectures that, for a specific choice of the parameters involved, allow us to reproduce ISTA, or a perturbation of ISTA for which we can bound the coefficients of the filters. Our case study is the limited-angle X-ray transform and its application to limited-angle computed tomography (LA-CT). In particular, we prove that, in the case of LA-CT, the operations of upscaling, downscaling, and convolution, which characterize our \Psi DONet and most deep learning schemes, can be exactly determined by combining the convolutional nature of the limited-angle Xray transform and basic properties defining an orthogonal wavelet system. We test two different implementations of \Psi DONet on simulated data from limited-angle geometry, generated from the ellipse data set. Both implementations provide equally good and noteworthy preliminary results, showing the potential of the approach we propose and paving the way to applying the same idea to other convolutional operators which are \Psi DOs or Fourier integral operators.
We consider the monodomain model, a system of a parabolic semilinear reaction-diffusion equation coupled with a nonlinear ordinary differential equation, arising from the (simplified) mathematical description of the electrical activity of the heart. We derive a posteriori error estimators accounting for different sources of error (space/time discretization and linearization). We prove reliability and efficiency (this latter under a suitable assumption) of the error indicators. Finally, numerical experiments assess the validity of the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.