Recently, learning only from ordinal information of the type “item x is closer to item y than to item z” has received increasing attention in the machine learning community. Such triplet comparisons are particularly well suited for learning from crowdsourced human intelligence tasks, in which workers make statements about the relative distances in a triplet of items. In this paper, we systematically investigate comparison-based centrality measures on triplets and theoretically analyze their underlying Euclidean notion of centrality. Two such measures already appear in the literature under opposing approaches, and we propose a third measure, which is a natural compromise between these two. We further discuss their relation to statistical depth functions, which comprise desirable properties for centrality measures, and conclude with experiments on real and synthetic datasets for medoid estimation and outlier detection.
We study the problem of learning causal models from observational data through the lens of interpolation and its counterpart-regularization. A large volume of recent theoretical as well as empirical work suggests that, in highly complex model classes, interpolating estimators can have good statistical generalization properties and can even be optimal for statistical learning. Motivated by an analogy between statistical and causal learning recently highlighted by Janzing (2019), we investigate whether interpolating estimators can also learn good causal models. To this end, we consider a simple linearly confounded model and derive precise asymptotics for the causal risk of the min-norm interpolator and ridge-regularized regressors in the high-dimensional regime. Under the principle of independent causal mechanisms, a standard assumption in causal learning, we find that interpolators cannot be optimal and causal learning requires stronger regularization than statistical learning. This resolves a recent conjecture in Janzing (2019). Beyond this assumption, we find a larger range of behavior that can be precisely characterized with a new measure of confounding strength. If the confounding strength is negative, causal learning requires weaker regularization than statistical learning, interpolators can be optimal, and the optimal regularization can even be negative. If the confounding strength is large, the optimal regularization is infinite and learning from observational data is actively harmful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.