In patients with DM2, CA of AF provides significant clinical benefits over the ADT and appears to be a reasonable approach regarding feasibility, effectiveness, and low procedural risk.
AimPredictions of plant traits over space and time are increasingly used to improve our understanding of plant community responses to global environmental change. A necessary step forward is to assess the reliability of global trait predictions. In this study, we predict community mean plant traits at the global scale and present a systematic evaluation of their reliability in terms of the accuracy of the models, ecological realism and various sources of uncertainty.LocationGlobal.Time periodPresent.Major taxa studiedVascular plants.MethodsWe predicted global distributions of community mean specific leaf area, leaf nitrogen concentration, plant height and wood density with an ensemble modelling approach based on georeferenced, locally measured trait data representative of the plant community. We assessed the predictive performance of the models, the plausibility of predicted trait combinations, the influence of data quality, and the uncertainty across geographical space attributed to spatial extrapolation and diverging model predictions.ResultsEnsemble predictions of community mean plant height, specific leaf area and wood density resulted in ecologically plausible trait–environment relationships and trait–trait combinations. Leaf nitrogen concentration, however, could not be predicted reliably. The ensemble approach was better at predicting community trait means than any of the individual modelling techniques, which varied greatly in predictive performance and led to divergent predictions, mostly in African deserts and the Arctic, where predictions were also extrapolated. High data quality (i.e., including intraspecific variability and a representative species sample) increased model performance by 28%.Main conclusionsPlant community traits can be predicted reliably at the global scale when using an ensemble approach and high‐quality data for traits that mostly respond to large‐scale environmental factors. We recommend applying ensemble forecasting to account for model uncertainty, using representative trait data, and more routinely assessing the reliability of trait predictions.
Aim The recent recovery of large carnivores in Europe has been explained as resulting from a decrease in human persecution driven by widespread rural land abandonment, paralleled by forest cover increase and the consequent increase in availability of shelter and prey. We investigated whether land cover and human population density changes are related to the relative probability of occurrence of three European large carnivores: the grey wolf (Canis lupus), the Eurasian lynx (Lynx lynx) and the brown bear (Ursus arctos). Location Europe, west of 64° longitude. Methods We fitted multi‐temporal species distribution models using >50,000 occurrence points with time series of land cover, landscape configuration, protected areas, hunting regulations and human population density covering a 24‐year period (1992–2015). Within the temporal window considered, we then predicted changes in habitat suitability for large carnivores throughout Europe. Results Between 1992 and 2015, the habitat suitability for the three species increased in Eastern Europe, the Balkans, North‐West Iberian Peninsula and Northern Scandinavia, but showed mixed trends in Western and Southern Europe. These trends were primarily associated with increases in forest cover and decreases in human population density, and, additionally, with decreases in the cover of mosaics of cropland and natural vegetation. Main conclusions Recent land cover and human population changes appear to have altered the habitat suitability pattern for large carnivores in Europe, whereas protection level did not play a role. While projected changes largely match the observed recovery of large carnivore populations, we found mismatches with the recent expansion of wolves in Central and Southern Europe, where factors not included in our models may have played a dominant role. This suggests that large carnivores’ co‐existence with humans in European landscapes is not limited by habitat availability, but other factors such as favourable human tolerance and policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.