Over the last decade, Web traffic has significantly shifted towards HTTPS due to an increased awareness for privacy. However, DNS traffic is still largely unencrypted, which allows user profiles to be derived from plaintext DNS queries. While DNS over TLS (DoT) and DNS over HTTPS (DoH) address this problem by leveraging transport encryption for DNS, both protocols are constrained by the underlying transport (TCP) and encryption (TLS) protocols, requiring multiple round-trips to establish a secure connection. In contrast, QUIC combines the transport and cryptographic handshake into a single round-trip, which allows the recently standardized DNS over QUIC (DoQ) to provide DNS privacy with minimal latency. In the first study of its kind, we perform distributed DoQ measurements across multiple vantage points to evaluate the impact of DoQ on Web performance. We find that DoQ excels over DoH, leading to significant improvements with up to 10% faster loads for simple webpages. With increasing complexity of webpages, DoQ even catches up to DNS over UDP (DoUDP) as the cost of encryption amortizes: With DoQ being only ∼2% slower than DoUDP, encrypted DNS becomes much more appealing for the Web.
The rapid deployment of new Internet protocols over the last few years and the COVID-19 pandemic more recently (2020) has resulted in a change in the Internet traffic composition. Consequently, an updated microscopic view of traffic shares is needed to understand how the Internet is evolving to capture both such shorter-and longerterm events. Toward this end, we observe traffic composition at a research network in Japan and a Tier-1 ISP in the USA. We analyze the traffic traces passively captured at two inter-domain links: MAWI (Japan) and CAIDA (New York-São Paulo), which cover ≈100 GB of data for MAWI traces and ≈4 TB of data for CAIDA traces in total. We begin by studying the impact of COVID-19 on the monitored MAWI link: We find a substantial increase in the traffic volume of OpenVPN and rsync, as well as increases in traffic volume from cloud storage and video conferencing services, which shows that clients shift to remote work during the pandemic. For traffic traces between March 2018 and December 2018, we find that the use of IPv6 is increasing quickly on the CAIDA monitor: The IPv6 traffic volume increases from 1.1% in March 2018 to 6.1% in December 2018, while the IPv6 traffic share remains stable in the MAWI dataset at around 9% of the traffic volume. Among other protocols at the application layer, 60%-70% of IPv4 traffic on the CAIDA link is HTTP(S) traffic, out of which two-thirds are encrypted; for the MAWI link, more than 90% of the traffic is Web, of which nearly 75% is encrypted. Compared to previous studies, this depicts a larger increase in encrypted Web traffic of up to a 3-to-1 ratio of HTTPS to HTTP. As such, our observations in this study further reconfirm that traffic shares change with time and can vary greatly depending on the vantage point studied despite the use of the same generalized methodology and analyses, which can also be applied to other traffic monitoring datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.