Dobzhansky-Muller (DM) incompatibilities involving sex chromosomes have been proposed to account for Haldane's rule (lowered fitness among hybrid offspring of the heterogametic sex) as well as Darwin's corollary (asymmetric fitness costs with respect to the direction of the cross). We performed simulation studies of a hybrid zone to investigate the effects of different types of DM incompatibilities on cline widths and positions of sex-linked markers. From our simulations, X-Y incompatibilities generate steep clines for both X-linked and Y-linked markers; random effects may produce strong noise in cline center positions when migration is high relative to fitness costs, but X- and Y-centers always coincide strictly. X-autosome and Y-autosome incompatibilities also generate steep clines, but systematic shifts in cline centers occur when migration is high relative to selection, as a result of a dominance drive linked to Darwin's corollary. Interestingly, sex-linked genes always show farther introgression than the associated autosomal genes. We discuss ways of disentangling the potentially confounding effects of sex biases in migration, we compare our results to those of a few documented contact zones, and we stress the need to study independent replicates of the same contact zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.