We present Annealed Mutational approximated Landscape (AMaLa), a new method to infer fitness landscapes from Directed Evolution experiments sequencing data. Such experiments typically start from a single wild-type sequence, which undergoes Darwinian in vitro evolution via multiple rounds of mutation and selection for a target phenotype. In the last years, Directed Evolution is emerging as a powerful instrument to probe fitness landscapes under controlled experimental conditions and as a relevant testing ground to develop accurate statistical models and inference algorithms (thanks to high-throughput screening and sequencing). Fitness landscape modeling either uses the enrichment of variants abundances as input, thus requiring the observation of the same variants at different rounds or assuming the last sequenced round as being sampled from an equilibrium distribution. AMaLa aims at effectively leveraging the information encoded in the whole time evolution. To do so, while assuming statistical sampling independence between sequenced rounds, the possible trajectories in sequence space are gauged with a time-dependent statistical weight consisting of two contributions: (i) an energy term accounting for the selection process and (ii) a generalized Jukes–Cantor model for the purely mutational step. This simple scheme enables accurately describing the Directed Evolution dynamics and inferring a fitness landscape that correctly reproduces the measures of the phenotype under selection (e.g., antibiotic drug resistance), notably outperforming widely used inference strategies. In addition, we assess the reliability of AMaLa by showing how the inferred statistical model could be used to predict relevant structural properties of the wild-type sequence.
The design of proteins with specific tasks is a major challenge in molecular biology with important diagnostic and therapeutic applications. High-throughput screening methods have been developed to systematically evaluate protein activity, but only a small fraction of possible protein variants can be tested using these techniques. Computational models that explore the sequence space in-silico to identify the fittest molecules for a given function are needed to overcome this limitation. In this article, we propose AnnealDCA, a machine-learning framework to learn the protein fitness landscape from sequencing data derived from a broad range of experiments that use selection and sequencing to quantify protein activity. We demonstrate the effectiveness of our method by applying it to antibody Rep-Seq data of immunized mice and screening experiments, assessing the quality of the fitness landscape reconstructions. Our method can be applied to most experimental cases where a population of protein variants undergoes various rounds of selection and sequencing, without relying on the computation of variant enrichment ratios, and thus can be used even in cases of disjoint sequence samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.