The study aims to create a preoperative model from baseline demographic and health-related quality of life scores (HRQOL) to predict a good to excellent early clinical outcome using a machine learning (ML) approach. A single spine surgery center retrospective review of prospectively collected data from January 2016 to December 2020 from the institutional registry (SpineREG) was performed. The inclusion criteria were age ≥ 18 years, both sexes, lumbar arthrodesis procedure, a complete follow up assessment (Oswestry Disability Index—ODI, SF-36 and COMI back) and the capability to read and understand the Italian language. A delta of improvement of the ODI higher than 12.7/100 was considered a “good early outcome”. A combined target model of ODI (Δ ≥ 12.7/100), SF-36 PCS (Δ ≥ 6/100) and COMI back (Δ ≥ 2.2/10) was considered an “excellent early outcome”. The performance of the ML models was evaluated in terms of sensitivity, i.e., True Positive Rate (TPR), specificity, i.e., True Negative Rate (TNR), accuracy and area under the receiver operating characteristic curve (AUC ROC). A total of 1243 patients were included in this study. The model for predicting ODI at 6 months’ follow up showed a good balance between sensitivity (74.3%) and specificity (79.4%), while providing a good accuracy (75.8%) with ROC AUC = 0.842. The combined target model showed a sensitivity of 74.2% and specificity of 71.8%, with an accuracy of 72.8%, and an ROC AUC = 0.808. The results of our study suggest that a machine learning approach showed high performance in predicting early good to excellent clinical results.
Aims
To create, using a machine learning (ML) approach, a preoperative model from baseline demographic and health-related quality of life scores (HRQOL) to predict a good to excellent early clinical outcome.
Materials and Methods
A single spine surgery center retrospective review of prospectively collected data from January 2016 to December 2020 from the institutional registry (SpineReg) was performed. The inclusion criteria were age > 18 years, both sexes, lumbar arthrodesis procedure, a complete follow up assessment (ODI, SF-36 and COMI back) and the capability to read and understand the Italian language.
A delta of improvement of the ODI higher than 12.7/100 was considered a "good early outcome". A combined target model of ODI (Δ ≥ 12.7/100), SF-36 PCS (Δ ≥ 6/100) and COMI back (Δ ≥ 2.2/10) was considered an "excellent early outcome". The performance of the ML models was evaluated in terms of sensitivity, i.e., True Positive Rate (TPR), specificity, i.e., True Negative Rate (TNR), accuracy and area under the receiver operating characteristic curve (AUC ROC).
Results
A total of 1243 patients were included in this study. The model for predicting ODI at 6 months follow up showed a good balance between sensitivity (74.3%) and specificity (79.4%), while providing a good accuracy (75.8%) with ROC AUC = 0.842.
The combined target model showed a sensitivity of 74.2% and specificity of 71.8%, with an accuracy of 72.8%, and a ROC AUC = 0.808.
Conclusion
The results of our study suggest that a machine learning approach showed high performance in predicting early good to excellent clinical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.