Production of fluent speech in humans is based on a precise and coordinated articulation of sounds. A speech articulation network (SAN) has been observed in multiple brain studies typically using either neuroimaging or direct electrical stimulation (DES), thus giving limited knowledge about the whole brain structural and functional organization of this network. In this study, seven right-handed patients underwent awake surgery resection of low-grade gliomas (4) and cavernous angiomas. We combined pre-surgical resting state fMRI (rs-fMRI) and diffusion MRI together with speech arrest sites obtained intra-operatively with DES to address the following goals: (i) determine the cortical areas contributing to the intrinsic functional SAN using the speech arrest sites as functional seeds for rs-fMRI; (ii) evaluate the relative contribution of gray matter terminations from the two major language dorsal stream bundles, the superior longitudinal fasciculus (SLF III) and the arcuate fasciculus (AF); and (iii) evaluate the possible pre-surgical prediction of SAN with rs-fMRI. In all these right-handed patients the intrinsic functional SAN included frontal, inferior parietal, temporal, and insular regions symmetrically and bilaterally distributed across the two hemispheres regardless of the side (four right) of speech arrest evocation. The SLF III provided a much higher density of terminations in the cortical regions of SAN in respect to AF. Pre-surgical rs-fMRI data demonstrated moderate ability to predict the SAN. The set of functional and structural data provided in this multimodal study characterized, at a whole-brain level, a distributed and bi-hemispherical network subserving speech articulation.
The study assessed whether the auditory reference provided by a music scale could improve spatial exploration of a standard musical instrument keyboard in right-brain-damaged patients with left spatial neglect. As performing music scales involves the production of predictable successive pitches, the expectation of the subsequent note may facilitate patients to explore a larger extension of space in the left affected side, during the production of music scales from right to left. Eleven right-brain-damaged stroke patients with left spatial neglect, 12 patients without neglect, and 12 age-matched healthy participants played descending scales on a music keyboard. In a counterbalanced design, the participants' exploratory performance was assessed while producing scales in three feedback conditions: With congruent sound, no-sound, or random sound feedback provided by the keyboard. The number of keys played and the timing of key press were recorded. Spatial exploration by patients with left neglect was superior with congruent sound feedback, compared to both Silence and Random sound conditions. Both the congruent and incongruent sound conditions were associated with a greater deceleration in all groups. The frame provided by the music scale improves exploration of the left side of space, contralateral to the right hemisphere, damaged in patients with left neglect. Performing a scale with congruent sounds may trigger at some extent preserved auditory and spatial multisensory representations of successive sounds, thus influencing the time course of space scanning, and ultimately resulting in a more extensive spatial exploration. These findings offer new perspectives also for the rehabilitation of the disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.