The object of this research was to determine the influence of the composition of coconut milk-based emulsions on its physical and chemical stability. Coconut represents a highly important product globally and its competitiveness is restricted to its commercialization in the form of cakes, flour and coconut oil mainly to the European Community. The search for new alternatives to diversification of products as raw materials for food, pharmaceutical and cosmetic sectors represents a potential challenge. Coconut Pulp (CP) was milled with its Coconut Water (CW), separating the Coconut Fiber (CF), which was then dried at 40°C and milled for its use in emulsions and homogenized at 10.000 rpm during 10 min. The surface response methodology was used with a composite central design (21 experiments), considering the independent variables: (CW+H2O)/CP (1.5-2.5); xanthan gum (GXanthan): 0.25-0.75%, CF: 2.5-7.5%; tert-butyl hydroquinone (TBHQ): 100-200 mg/kg. In addition, dairy serum was used as surfactant and salt. The multiple regression method was used to predict the linear and quadratic terms and the interaction of the independent variables in the models.
The objective of this study was to optimize the process of Spray Drying (SD) for the obtaining of coconut powder fortified with Physiologically Active Compounds (PAC), according to the dryer's operating characteristics and the product, being (SD) is one of the most used technologies in the powder industry, guaranteeing good quality attributes for various applications in the food sector; it was used a response surface design based on five independent variables:: Maltodextrin (MD), Inlet Air Temperature (IAT), Outlet Air Temperature (OAT), Atomizing Disk Velocity (ADV) and drying Chamber Vacuum Pressure (VPC) and the dependent variables: yield (*R), Deposit Formation (DF) in the drying chamber, humidity (Xw), water activity (aw), Hygroscopicity (H), Solubility (S), wettability (Hu), color (L*, a* y b*), recovery of PAC (Ca, vitamins C, D3 and E), Peroxide Index (PI) and particle size (D10, D50 y D90). The results were analyzed statistically from the Statgraphics XVI.I software and through analysis of variance with 5% level of significance. In general, response variables were affected by all independent variables. The experimental optimization defined the CP+PAC process conditions as follows:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.