Background Steroid use for COVID-19 is based on the possible role of these drugs in mitigating the inflammatory response, mainly in the lungs, triggered by SARS-CoV-2. This study aimed at evaluating at evaluating the efficacy of methylprednisolone (MP) among hospitalized patients with suspected COVID-19. Methods Parallel, double-blind, placebo-controlled, randomized, phase IIb clinical trial was performed with hospitalized patients aged ≥ 18 years with clinical, epidemiological and/or radiological suspected COVID-19, at a tertiary care facility in Manaus, Brazil. Patients were randomly allocated (1:1 ratio) to receive either intravenous MP (0.5 mg/kg) or placebo (saline solution), twice daily, for 5 days. A modified intention-to-treat (mITT) analysis was conducted. The primary outcome was 28-day mortality. ClinicalTrials Identifier NCT04343729. Findings From April 18 to June 16, 2020, 647 patients were screened, 416 randomized, and 393 analyzed as mITT, MP in 194 and placebo in 199 individuals. SARS-CoV-2 infection was confirmed by RT-PCR in 81.3%. Mortality at day 28 was not different between groups. A subgroup analysis showed that patients over 60 years in the MP group had a lower mortality rate at day 28. Patients in the MP arm tended to need more insulin therapy, and no difference was seen in virus clearance in respiratory secretion until day 7. Conclusion The findings of this study suggest that a short course of MP in hospitalized patients with COVID-19 did not reduce mortality in the overall population.
The severity, disabilities, and lethality caused by the coronavirus 2019 (COVID-19) disease have dumbfounded the entire world on an unprecedented scale. The multifactorial aspect of the infection has generated interest in understanding the clinical history of COVID-19, particularly the classification of severity and early prediction on prognosis. Metabolomics is a powerful tool for identifying metabolite signatures when profiling parasitic, metabolic, and microbial diseases. This study undertook a metabolomic approach to identify potential metabolic signatures to discriminate severe COVID-19 from non-severe COVID-19. The secondary aim was to determine whether the clinical and laboratory data from the severe and non-severe COVID-19 patients were compatible with the metabolomic findings. Metabolomic analysis of samples revealed that 43 metabolites from 9 classes indicated COVID-19 severity: 29 metabolites for non-severe and 14 metabolites for severe disease. The metabolites from porphyrin and purine pathways were significantly elevated in the severe disease group, suggesting that they could be potential prognostic biomarkers. Elevated levels of the cholesteryl ester CE (18:3) in non-severe patients matched the significantly different blood cholesterol components (total cholesterol and HDL, both p < 0.001) that were detected. Pathway analysis identified 8 metabolomic pathways associated with the 43 discriminating metabolites. Metabolomic pathway analysis revealed that COVID-19 affected glycerophospholipid and porphyrin metabolism but significantly affected the glycerophospholipid and linoleic acid metabolism pathways (p = 0.025 and p = 0.035, respectively). Our results indicate that these metabolomics-based markers could have prognostic and diagnostic potential when managing and understanding the evolution of COVID-19.
Respiratory failure (RF) is the main cause of hospital admission in HIV/AIDS patients. This study assessed comorbidities and laboratory parameters in HIV/AIDS inpatients with RF (N = 58) in relation to those without RF (N = 36). Tuberculosis showed a huge relative risk and platelet counts were slightly higher in HIV/AIDS inpatients with RF. A flow cytometry assay for reactive oxygen species (ROS) showed lower levels in platelets of these patients in relation to the healthy subjects. However, when stimulated with adrenaline, ROS levels increased in platelets and platelet-derived microparticles of HIV/AIDS inpatients, which may increase the risk of RF during HIV and tuberculosis (HIV-TB) coinfection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.