Phylogenetic trees are representations of evolutionary relationships among species and contain signatures of the processes responsible for the speciation events they display. Inferring processes from tree properties, however, is challenging. To address this problem we analysed a spatially-explicit model of speciation where genome size and mating range can be controlled. We simulated parapatric and sympatric (narrow and wide mating range, respectively) radiations and constructed their phylogenetic trees, computing structural properties such as tree balance and speed of diversification. We showed that parapatric and sympatric speciation are well separated by these structural tree properties. Balanced trees with constant rates of diversification only originate in sympatry and genome size affected both the balance and the speed of diversification of the simulated trees. Comparison with empirical data showed that most of the evolutionary radiations considered to have developed in parapatry or sympatry are in good agreement with model predictions. Even though additional forces other than spatial restriction of gene flow, genome size, and genetic incompatibilities, do play a role in the evolution of species formation, the microevolutionary processes modeled here capture signatures of the diversification pattern of evolutionary radiations, regarding the symmetry and speed of diversification of lineages.
Many theoretical works have attempted to coarse grain gene expression at the level of transcription and translation via frameworks based on exclusion processes. Usually in these models the threedimensional conformation of the substrates (DNA and mRNA) is neglected, and particles move on a static unidimensional lattice in contact to an infinite reservoir. In this work we generalise the paradigmatic exclusion process and study the transport of particles along a unidimensional polymerlike flexible lattice immersed in a three-dimensional particle reservoir. We study the recycling of particles in the reservoir, how the transport is influenced by the global conformation of the lattice and, in turn, how particle density dictates the structure of the polymer. arXiv:1803.08110v4 [cond-mat.stat-mech]
Protein synthesis rates are determined, at the translational level, by properties of the transcript's sequence. The efficiency of an mRNA can be tuned by varying the ribosome binding sites controlling the recruitment of the ribosomes, or the codon usage establishing the speed of protein elongation. In this work we propose transcript length as a further key determinant of translation efficiency. Based on a physical model that considers the kinetics of ribosomes advancing on the mRNA and diffusing in its surrounding, as well as mRNA circularisation and ribosome drop-off, we explain how the transcript length may play a central role in establishing ribosome recruitment and the overall translation rate of an mRNA. We also demonstrate how this process may be involved in shaping the experimental ribosome density-gene length dependence. Finally, we argue that cells could exploit this mechanism to adjust and balance the usage of its ribosomal resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.