BackgroundPolycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence.ResultsDeep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression.ConclusionsThe multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind.
Ataxia-telangiectasia mutated (ATM) is known to play a central role in effecting the DNA damage response that protects somatic cells from potentially harmful mutations, and in this role it is a key anti-cancer agent. However, it also promotes repair of therapeutic damage (e.g. radiotherapy) and so frustrates the efficacy of some treatments. A better understanding of the mechanisms of ATM regulation is therefore important both in prevention and treatment of disease. While progress has been made in elucidating the key signal transduction pathways that mediate damage response in somatic cells, relatively little is known about whether these function similarly in pluripotent embryonic stem (ES) cells where ATM is also implicated in our understanding of adult stem cell ageing and in improvements in regenerative medicine. There is some evidence that different mechanisms may operate in ES cells and that our understanding of the mechanisms of ATM regulation is therefore incomplete. We investigated the behaviour of the damage response signalling pathway in mouse ES cells. We subjected the cells to the DNA-damaging agent doxorubicin, a drug that induces double-strand breaks, and measured ATM expression levels. We found that basal ATM gene expression was unaffected by doxorubicin treatment. However, following ATM kinase inhibition using a specific ATM inhibitor, we observed a significant increase in ATM and ataxia-telangiectasia and Rad3 related transcription. We demonstrate the use of a dynamical modelling approach to show that these results cannot be explained in terms of known mechanisms. Furthermore, we show that the modelling approach can be used to identify a novel feedback process that may underlie the anomalies in the data. The predictions of the model are consistent both with our in vitro experiments and with in vivo studies of ATM expression in somatic cells in mice, and we hypothesize that this feedback operates in both somatic and ES cells in vivo. The results point to a possible new target for ATM inhibition that overcomes the restorative potential of the proposed feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.