In air jet looms, the weft yarn is transported from the prewinder to the reed by means of an air flow. In this work, the motion of a yarn inside a main nozzle during the first stage of an insertion process is modeled and analyzed. In this stage, the weft yarn is clamped at one side and free at the other side. Therefore, the deformation waves of a clamped–free yarn are modeled. A three-dimensional, two-way, fluid–structure interaction simulation has been performed in which the yarn is represented as a flexible cylinder and the arbitrary Lagrangian–Eulerian technique is employed. The results of the simulation have been compared quantitatively and qualitatively with experiments. It was, however, not possible to match the initial position and stress state of the yarn in the simulations to that in the experiments. This causes large differences between the simulated and measured yarn positions and wave characteristics, especially at the beginning. The agreement between experimental and simulated wave characteristics notably improves as time progresses, but substantial differences remain. Analyzing the overall motion of the yarn inside the main nozzle shows that the mixing region, where the shocks are located, can be considered as an excitation point. In this point, the aerodynamic normal forces are high if the yarn is not located on the axis of the main nozzle. All deformation waves start from the mixing region and propagate along the yarn.
In air-jet weaving looms, the main nozzle pulls the yarn from the prewinder by means of a high velocity air flow. The flexible yarn is excited by the flow and exhibits high amplitude oscillations. The motion of the yarn is important for the reliability and the attainable speed of the insertion. Fluid-structure interaction simulations calculate the interaction between the air flow and the yarn motion and could provide additional insight into yarn behavior. However, the use of an arbitrary Lagrangian–Eulerian approach for the deforming fluid domain around a flexible yarn typically results in severe mesh degradation, vastly reducing the accuracy of the calculations or limiting the physical time that can be simulated. In this research, the feasibility of using a Chimera technique to simulate the motion of a yarn interacting with the air flow from a main nozzle was investigated. This methodology combines a fixed background grid with a moving component grid deforming along with the yarn. The component grid is, however, not constrained by the boundaries of the flow domain allowing for large deformations with limited mesh degradation. Two separate cases were investigated. In the first case, the yarn was considered to be clamped at the main nozzle inlet. For the second case, the yarn was allowed to move axially as the main nozzle pulled it from a drum storage system.
Cardiovascular disease often occurs with silent and gradual alterations of cardiac blood flow that can lead to the onset of chronic pathological conditions. Image-based patient-specific Computational Fluid Dynamics (CFD) models allow for an extensive quantification of the flow field beyond the direct capabilities of medical imaging techniques that could support the clinicians in the early diagnosis, follow-up, and treatment planning of patients. Nonetheless, the large and impulsive kinematics of the left ventricle (LV) and the mitral valve (MV) pose relevant modeling challenges. Arbitrary Lagrangian-Eulerian (ALE) based computational fluid dynamics (CFD) methods struggle with the complex 3D mesh handling of rapidly moving valve leaflets within the left ventricle (LV). We, therefore, developed a Chimera-based (overset meshing) method to build a patient-specific 3D CFD model of the beating LV which includes a patient-inspired kinematic model of the mitral valve (LVMV). Simulations were performed with and without torsion. In addition, to evaluate how the intracardiac LV flow is impacted by the MV leaflet kinematics, a third version of the model without the MV was generated (LV with torsion). For all model versions, six cardiac cycles were simulated. All simulations demonstrated cycle-to-cycle variations that persisted after six cycles but were albeit marginal in terms of the magnitude of standard deviation of velocity and vorticity which may be related to the dissipative nature of the numerical scheme used. The MV was found to have a crucial role in the development of the intraventricular flow by enhancing the direct flow, the apical washout, and the propagation of the inlet jet towards the apical region. Consequently, the MV is an essential feature in the patient-specific CFD modeling of the LV. The impact of torsion was marginal on velocity, vorticity, wall shear stress, and energy loss, whereas it resulted to be significant in the evaluation of particle residence times. Therefore, including torsion could be considered in patient-specific CFD models of the LV, particularly when aiming to study stasis and residence time. We conclude that, despite some technical limitations encountered, the Chimera technique is a promising alternative for ALE methods for 3D CFD models of the heart that include the motion of valve leaflets.
This research was aimed at obtaining a first estimation of the effect of turbulent vortices present in the relay nozzle jets of an air jet loom on the weft. To this end a large eddy simulation (LES) model was set up and validated capable of simulating a highly underexpanded jet up to a point sufficiently far from the nozzle exit such that flow features at the weft location could be analyzed. The quality of the LES was evaluated based on several quality criteria as well as by comparing the results with experiments and data from the literature. The results show that for a free jet substantial velocity fluctuations are present at a representative yarn location. By inserting a rigid cylinder at this location, the corresponding force fluctuations on a smooth yarn were also obtained. The research shows that the unsteadiness in the jet is quite substantial, as are the corresponding force fluctuations. These fluctuations could have a profound impact on the yarn motion and should at least be considered when using numerical tools to evaluate the forces on or the motion of a yarn acted on by a relay nozzle jet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.