Although marine plastic pollution has been the focus of several studies, there are still many gaps in our understanding of the concentrations, characteristics and impacts of plastics in the oceans. This study aimed to quantify and characterize plastic debris in oceanic surface waters of the Antarctic Peninsula. Sampling was done through surface trawls, and mean debris concentration was estimated at 1,794 items.km
−2
with an average weight of 27.8 g.km
−2
. No statistical difference was found between the amount of mesoplastics (46%) and microplastics (54%). We found hard and flexible fragments, spheres and lines, in nine colors, composed mostly of polyurethane, polyamide, and polyethylene. An oceanographic dispersal model showed that, for at least seven years, sampled plastics likely did not originate from latitudes lower than 58°S. Analysis of epiplastic community diversity revealed bacteria, microalgae, and invertebrate groups adhered to debris. Paint fragments were present at all sampling stations and were approximately 30 times more abundant than plastics. Although paint particles were not included in plastic concentration estimates, we highlight that they could have similar impacts as marine plastics. We call for urgent action to avoid and mitigate plastic and paint fragment inputs to the Southern Ocean.
Rising concentrations of plastics in the oceans are leading to increasing negative interactions with marine biota, including ingestion by endangered and/or economically important seafood species such as fish. In this paper, we visually evaluated plastic debris ingestion by 965 specimens of eight commercially exploited fish species from different marine habitats off the southeast-south coast of Brazil. All species ingested plastics, with pelagic animals having higher amounts, frequency of occurrence, diversity and sizes of ingested items than demersal-pelagic and demersal animals. Highest frequency of occurrence (FO%) of plastic ingestion (25.8%) was observed for the pelagic skipjack tuna Katsuwonus pelamis (Scombridae), and lowest (5%) for the demersal bluewing searobin Prionotus punctatus (Triglidae). Microplastics predominated in all species, and fibers/lines and fragments were the main items found, possibly derived from fishing materials. The most abundant plastic colors were transparent, black and blue, and the most common polymers were polyamide and polyurethane. With the available data, no relationship between the size of the individuals and amount of ingested plastics was observed. Considering the negative impacts of plastic ingestion on marine fish, and potentially on human health due to their consumption, understanding ingestion patterns is critical for better evaluating their origin and possible causes, and consequently for helping define prevention strategies for this problem.
Long‐term changes in the abundance of fisheries resources from the Patos Lagoon estuary and adjacent coastal waters in southern Brazil have been observed. Despite this understanding, it is well known that the perception of pristine state of the environment is susceptible to inter‐generational changes, commonly known as shifting baseline syndrome (SBS). An useful approach in the reconstruction of pristine scenarios and in lack of data, as often occurs in small‐scale fisheries, is the local ecological knowledge (LEK). Temporal changes in the perception of 81 fishers with 1–63 years of fishing about the resources status were analysed. More experienced fishers reported larger catches, heavier individuals and perceived a greater number of species as "scarce" nowadays and "common" at the beginning of their careers proving the existence of a SBS among them. Over time, the number of fishing sites with very high catches decreased and fishing sites shifted from the lower towards the upper estuary. The perception of the fishers corroborated the real decreasing scenario in estuarine fisheries resources shared with industrial fishing in coastal waters. The results reinforce the utility of LEK for reconstruction of biological scenarios when no empirically obtained data are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.