The value of data analytics is fundamental in cyber-physical production systems for tasks like optimization and predictive maintenance. The de facto standard for conducting data analytics in industrial applications is the CRISP-DM methodology. However, CRISP-DM does not specify a data acquisition phase within production scenarios. With this chapter, we present DMME as an extension to the CRISP-DM methodology specifically tailored for engineering applications. It provides a communication and planning foundation for data analytics within the manufacturing domain, including the design and evaluation of the infrastructure for process-integrated data acquisition. In addition, the methodology includes functions of design of experiments capabilities to systematically and efficiently identify relevant interactions. The procedure of DMME methodology is presented in detail and an example project illustrates the workflow. This case study was part of a collaborative project with an industrial partner who wanted an application to detect marginal lubrication in linear guideways of a servo-driven axle based only on data from the drive controller. Decision trees detect the lubrication state, which are trained with experimental data. Several experiments, taking the lubrication state, velocity, and load on the slide into account, provide the training and test datasets.
In motion control, the generation of motion profiles for non-linear kinematics is usually computationally complex. In order to minimize the workload on the machine’s control system, the approach pursued is outsourcing complex calculation tasks to the offline area. In this offline motion preparation, predefined criteria have to be taken into account to guarantee process stability on the real machine. During the motion preparation, a high performance is desired, characterized by less data generated and at the same time little computing effort. The evaluation will use the example of a motion specification, which is characterized by a large amount of data compared to conventional motion specifications. Thus, the demands on performance become even higher. This paper examines the performance of different motion preparation approaches known from literature. On the one hand, selected spline-based algorithms are discussed and compared. A recursive algorithm based on monomial splines is recommended for use in the example. On the other hand, a very simple approach based on the linearization of the non-linear workspace of the mechanism is presented and applied on the algorithms. With this, the performance increased significantly again.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.