Abstract-Cold-start scenarios in recommender systems are situations in which no prior events, like ratings or clicks, are known for certain users or items. To compute predictions in such cases, additional information about users (user attributes, e.g. gender, age, geographical location, occupation) and items (item attributes, e.g. genres, product categories, keywords) must be used.We describe a method that maps such entity (e.g. user or item) attributes to the latent features of a matrix (or higherdimensional) factorization model. With such mappings, the factors of a MF model trained by standard techniques can be applied to the new-user and the new-item problem, while retaining its advantages, in particular speed and predictive accuracy.We use the mapping concept to construct an attributeaware matrix factorization model for item recommendation from implicit, positive-only feedback. Experiments on the newitem problem show that this approach provides good predictive accuracy, while the prediction time only grows by a constant factor.
Recommender systems are widely used in many areas, especially in ecommerce. Recently, they are also applied in e-learning for recommending learning objects (e.g. papers) to students. This chapter introduces state-of-the-art recommender system techniques which can be used not only for recommending objects like tasks/exercises to the students but also for predicting student performance. We formulate the problem of predicting student performance as a recommender system problem and present matrix factorization methods, which are currently known as the most effective recommendation approaches, to implicitly take into account the prevailing latent factors (e.g. "slip" and "guess") for predicting student performance. As a learner's knowledge improves over time, too, we propose tensor factorization methods to take the temporal effect into account. Finally, some experimental results and discussions are provided to validate the proposed approach.
The Social Web is successfully established, and steadily growing in terms of users, content and services. People generate and consume data in real-time within social networking services, such as Twitter, and increasingly rely upon continuous streams of messages for real-time access to fresh knowledge about current affairs. In this paper, we focus on analyzing social streams in real-time for personalized topic recommendation and discovery. We consider collaborative filtering as an online ranking problem and present Stream Ranking Matrix Factorization -RMFX -, which uses a pairwise approach to matrix factorization in order to optimize the personalized ranking of topics. Our novel approach follows a selective sampling strategy to perform online model updates based on active learning principles, that closely simulates the task of identifying relevant items from a pool of mostly uninteresting ones. RMFX is particularly suitable for large scale applications and experiments on the 476 million Twitter tweets dataset show that our online approach largely outperforms recommendations based on Twitter's global trend, and it is also able to deliver highly competitive Top-N recommendations faster while using less space than Weighted Regularized Matrix Factorization (WRMF), a state-of-the-art matrix factorization technique for Collaborative Filtering, demonstrating the efficacy of our approach.
A key element of the social networks on the internet such as Facebook and Flickr is that they encourage users to create connections between themselves, other users and objects.One important task that has been approached in the literature that deals with such data is to use social graphs to predict user behavior (e.g. joining a group of interest). More specifically, we study the cold-start problem, where users only participate in some relations, which we will call social relations, but not in the relation on which the predictions are made, which we will refer to as target relations.We propose a formalization of the problem and a principled approach to it based on multi-relational factorization techniques. Furthermore, we derive a principled feature extraction scheme from the social data to extract predictors for a classifier on the target relation. Experiments conducted on real world datasets show that our approach outperforms current methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.