In order to better understand and quantify the effect of instabilities in systems utilizing flow boiling heat transfer, the present study explores dynamic results for pressure drop, mass velocity, thermodynamic equilibrium quality, and heated wall temperature to ascertain and analyze the dominant modes in which they oscillate. Flow boiling experiments are conducted for a range of mass velocities with both subcooled and saturated inlet conditions in vertical upflow, vertical downflow, and horizontal flow orientations. High frequency pressure measurements are used to investigate the influence of individual flow loop components (flow boiling module, pump, preheater, condenser, etc.) on dynamic behavior of the fluid, with fast Fourier transforms of the same used to provide critical frequency domain information. Conclusions from this analysis are used to isolate instabilities present within the system due to physical interplay between thermodynamic and hydrodynamic effects. Parametric analysis is undertaken to better understand the conditions under which these instabilities form and their impact on system performance. Several prior stability maps are presented, with new stability maps provided to better address contextual trends discovered in the present study.
This study explores flow boiling pressure drop of FC-72 in a rectangular channel subjected to single-side and double-sided heating for vertical upflow, vertical downflow, and horizontal flow with positive inlet quality. Analysis of temporal records of pressure transducer signals is used to assess the influences of orientation, mass velocity, inlet quality, heat flux, and single-sided versus double-sided heating on magnitude of pressure drop oscillations, while fast Fourier transforms of the same records are used to capture dominant frequencies of oscillations. Time-averaged pressure drop results are also presented, with trends focusing on the competing influences of body force and flow inertia, and particular attention paid to the impact of vapor content at the test section inlet and the rate of vapor generation within the test section on pressure drop. Several popular pressure drop correlations are evaluated against the present pressure drop database. Predictions are presented for subsets of the database corresponding to low and high ranges of inlet quality and mass velocity. The correlations are ranked based on mean absolute error, overall data trends, and data spread. While most show general success in capturing the data trends, they do so with varying degrees of accuracy.
Historically, study of two-phase flow instabilities has been arguably one of the most challenging endeavors in heat transfer literature due to the wide range of instabilities systems can manifest depending on differences in operating conditions and flow geometry. This study utilizes experimental results for vertical upflow boiling of FC-72 in a rectangular channel with finite inlet quality to investigate Density Wave Oscillations (DWOs) and assess their potential impact on design of two-phase systems for future space missions. High-speed flow visualization image sequences are presented and used to directly relate the cyclical passage of High and Low Density Fronts (HDFs and LDFs) to dominant low-frequency oscillations present in transient pressure signals commonly attributed to DWOs. A methodology is presented to determine frequency and amplitude of DWO induced pressure oscillations, which are then plotted for a wide range of relevant operating conditions. Mass velocity (flow inertia) is seen to be the dominant parameter influencing frequency and amplitude of DWOs. Amplitude of pressure oscillations is at most 7% of the time-averaged pressure level for current operating conditions, meaning there is little risk to space missions. Reconstruction of experimental pressure signals using a waveform defined by frequency and amplitude of DWO induced pressure fluctuations is seen to have only moderate agreement with the original signal due to the oversimplifications of treating DWO induced fluctuations as perfectly sinusoidal in nature, assuming they occur at a constant frequency value, and neglecting other transient flow features. This approach is nonetheless determined to have potential value for use as a boundary condition to introduce DWOs in two-phase flow simulations should a model be capable of accurately predicting frequency and amplitude of oscillation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.