Background With the improved survival for patients with malignant bone tumors, there is a trend to reconstruct defects using biologic techniques. While the use of an intercalary allograft is an option, the procedures are technically demanding and it is unclear whether the complication rates and survival are similar to other approaches. Questions/purposes We evaluated survivorship, complications, and functional scores of patients after receiving intercalary femur segmental allografts. Patients and Methods We retrospectively reviewed 83 patients who underwent an intercalary femur segmental allograft reconstruction. We determined allograft survival using the Kaplan-Meier method. We evaluated patient function with the Musculoskeletal Tumor Society scoring system. Minimum followup was 24 months (median, 61 months; range, 24-182 months).Results Survivorship was 85% (95% confidence interval: 93%-77%) at 5 years and 76% (95% confidence interval: 89%-63%) at 10 years. Allografts were removed in 15 of the 83 patients: one with infection, one with local recurrence, and 13 with fractures. Of the 166 host-donor junctions, 22 (13%) did not initially heal. Nonunion rate was 19% for diaphyseal junctions and 3% for metaphyseal junctions. We observed an increase in the diaphysis nonunion rate in patients fixed with nails (28%) compared to those fixed with plates (15%). Fracture rate was 17% and related to areas of the allograft not adequately protected with internal fixation. All patients without complications had mainly good or excellent Musculoskeletal Tumor Society functional results. Conclusions Diaphyseal junctions have higher nonunion rates than metaphyseal junctions. The internal fixation should span the entire allograft to avoid the risk of fracture. Our observations suggest segmental allograft of the femur provides an acceptable alternative in reconstructing tumor resections.
Surgical precision in oncologic surgery is essential to achieve adequate margins in bone tumor resections. Three-dimensional preoperative planning and bone tumor resection by navigation have been introduced to orthopedic oncology in recent years. However, the accuracy of preoperative planning and navigation is unclear. The purpose of this study was to evaluate the accuracy of preoperative planning and the navigation system. A total of 28 patients were evaluated between May 2010 and February 2011. Tumor locations were the femur (n=17), pelvis (n=6), sacrum (n=2), tibia (n=2), and humerus (n=1). All resections were planned in a virtual scenario using computed tomography and magnetic resonance imaging fusion. A total of 61 planes or osteotomies were performed to resect the tumors. Postoperatively, computed tomography scans were obtained for all surgical specimens, and the specimens were 3-dimensionally reconstructed from the scans. Differences were determined by finding the distances between the osteotomies virtually programmed and those performed. The global mean of the quantitative comparisons between the osteotomies programmed and those obtained through the resected specimen was 2.52±2.32 mm for all patients. Differences between osteotomies virtually programmed and those achieved by navigation intraoperatively were minimal.
Background Bone tumor resections for limb salvage have become standard treatment. Recently, computer-assisted navigation has been introduced to improve the accuracy of joint arthroplasty and possible tumor resection surgery; however, like with any new technology, its benefits and limitations need to be characterized for surgeons to make informed decisions about whether to use it. Questions/purposes We wanted to (1) assess the technical problems associated with computer-assisted navigation; (2) assess the accuracy of the registration technique; (3) define the time required to perform a navigated resection in orthopedic oncology; and (4) the frequency of complications such as local recurrence, infection, nonunion, fracture, and articular collapse after tumor resection and bone reconstruction with allografts using intraoperative navigation assistance. Methods We analyzed 69 consecutive patients with bone tumors of the extremities that were reconstructed with massive bone allografts using intraoperative navigation assistance with a minimum followup of 12 months (mean, 29 months; range, 12-43 months). All patients had their tumors reconstructed in three-dimensional format in a virtual platform and planning was performed to determine the osteotomy position according to oncology margins in a CT-MRI image fusion. Tumor resections and allograft reconstructions were performed using a computer navigation system according to the previously planned cuts. We analyzed intraoperative data such as technical problems related to the navigation procedure, registration technique error, length of time for the navigation procedure, and postoperative complications such as local recurrence, infection, nonunion, fracture, and articular collapse. Results In three patients (4%), the navigation was not carried out as a result of technical problems. Of the 66 cases in which navigation was performed, the mean registration error was 0.65 mm (range, 0.3-1.2 mm). The mean required time for navigation procedures, including bone resection and allograft reconstruction during surgery, was 35 minutes (range, 18-65 minutes). Complications that required a second surgical procedure were recorded for nine patients including one local recurrence, one infection, two fractures, one articular collapse, and four nonunions. In two of these nine patients, the allograft needed to be removed. At latest followup, three patients died of their original disease. Conclusions The navigation procedure could not be performed for technical reasons in 4% of the series. The mean registration error was 0.65 mm in this series and the navigation procedure itself adds a mean of 35 minutes during
Background Computer navigation during surgery can help oncologic surgeons perform more accurate resections. However, some navigation studies suggest that this tool may result in unique intraoperative problems and increased surgical time. The degree to which these problems might diminish with experience-the learning curve-has not, to our knowledge, been evaluated for navigation-assisted tumor resections. Questions/purposes (1) What intraoperative technical problems were observed during the first 2 years using navigation? (2) What was the mean time for navigation procedures and the time improvement during the learning curve? (3) Have there been any differences in the accuracy of the registration technique that occurred over time? (4) Did navigation achieve the goal of achieving a wide bone margin? Methods All patients who underwent preoperative virtual planning for tumor bone resections and operated on with navigation assistance from 2010 to 2012 were prospectively collected. Two surgeons (GLF, LAA-T) performed the intraoperative navigation assistance. Both surgeons had more than 5 years of experience in orthopaedic oncology with more than 60 oncology cases per year per surgeon. This study includes from the very first patients performed with navigation. Although they did not take any formal training in orthopaedic oncology navigation, both surgeons were trained in navigation for knee prostheses. Between 2010 and 2012, we performed 124 bone tumor resections; of these, 78 (63%) cases were resected using intraoperative navigation assistance. During this period, our general indications for use of navigation included pelvic and sacral tumors and those tumors that were reconstructed with massive bone allografts to obtain precise matching of the host and allograft osteotomies. Seventy-eight patients treated with this technology were included in the study. Technical problems (crashes) and time for the navigation procedure were reported after surgery. Accuracy of the registration technique was defined and the surgical margins of the removed specimen were determined by an experienced bone pathologist after the surgical procedure as intralesional, marginal, or wide margins. To obtain these One of the authors certifies that he (LAA-T) or a member of his immediate family, has or may receive payments or benefits, during the study period, an amount of USD 10,000 to USD 100,000 from Stryker Americas (Miramar, FL, USA 123 Clin Orthop Relat Res (2017) 475:668-675 DOI 10.1007/s11999-016-4761-z Clinical Orthopaedics and Related Research ® A Publication of The Association of Bone and Joint Surgeons® data, we performed a chart review and review of operative notes.Results In four patients (of 78 [5%]), the navigation was not completed as a result of technical problems; all occurred during the first 20 cases of the utilization of this technology. The mean time for navigation procedures during the operation was 31 minutes (range, 11-61 minutes), and the early navigations took more time (the regression analysis shielded R 2 = 0.35 ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.