Grant-free random access is a key enabler in massive machine-type communications (mMTC) to reduce signalling overhead and latency thereby improving the energy efficiency. One of its main challenges lies in joint user activity identification and channel estimation (JUICE). Due to the sporadic mMTC traffic, JUICE can be solved as a compressive sensing (CS) problem. We address CS-based JUICE in uplink with singleantenna transmitters and a multiantenna base station under spatially correlated fading channels. We formulate a novel CS problem that utilizes prior information on the second order statistics of the channel of each user to improve the performance. We propose a method based on alternating direction method of multipliers to solve the JUICE efficiently. The simulation results show that the proposed method significantly improves the user identification accuracy and channel estimation performance with lower signalling overhead as compared to the baseline schemes.
As a key enabler for massive machine-type communications (mMTC), spatial multiplexing relies on massive multiple-input multiple-output (mMIMO) technology to serve the massive number of user equipments (UEs). To exploit spatial multiplexing, accurate channel estimation through pilot signals is needed. In mMTC systems, it is impractical to allocate a unique orthogonal pilot sequence to each UE as it would require too long pilot sequences, degrading the spectral efficiency. This work addresses the design of channel features from correlated fading channels to assist the pilot assignment in multi-sector mMTC systems under pilot reuse of orthogonal sequences. In order to reduce pilot collisions and to enable pilot reuse, we propose to extract features from the channel covariance matrices that reflect the level of orthogonality between the UEs channels. Two features are investigated: covariance matrix distance (CMD) feature and CMD-aided channel charting (CC) feature. In terms of symbol error rate and achievable rate, the CC-based feature shows superior performance than the CMD-based feature and baseline pilot assignment algorithms.
This research has been financially supported by the Academy of Finland under the projects ROHM and 6G Flagship. The work of M. Leinonen has also been financially supported in part by Infotech Oulu and the Academy of Finland (grant 340171 and 323698). Preliminary results of this paper were presented in 2020 IEEE Globecom Workshops and 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.